

PORTABLE SANITIZATION CHAMBER

Robertson Beauchamp, Jacob Blackburn, Lauren Kieffer, Elliot Nation, Angel Soto, Dangxian Zha

April 25, 2014

NORTHERN ARIZONA UNIVERSITY

OVERVIEW

- Introduction
- Problem Formulation
- Sanitizing Methods
- Proposed Design
- Prototyping
- Testing and Results
- Final Design
- Cost Analysis
- Conclusion

Elliot Nation

INTRODUCTION

- W.L. Gore & Associates
- Portable Sanitization Chamber
- Decrease bioburden levels of *Bacillus atrophaeus*
- \$3,000 budget

CLIENT NEEDS

W.L. Gore is looking for a device that is:

- Safe for all users
- Portable
- Reduces the level of bioburdens on various materials
- Cost efficient
- Time efficient

To develop a portable sanitization process that disinfects items to acceptable bioburden levels.

Elliot Nation

Problem Formulation

Design requirements are derived from client needs and the scope of the project as:

- Objectives
- Constraints

Contemporary sanitizing methods are compared against objectives to reveal feasible solutions.

OBJECTIVES

Objective	Definitive Justification	Units of Measurement
Reducing bioburden levels	Common pathogens and bacterias eliminated	%
Chemical exposure/residue	Concentration of substance in air space at 25°C and 1 atmosphere	mg/L, ppm
Material functionality retention	Process temperature	°C
System portability	System dimensions and weight	cm, kg
Comparatively inexpensive	Cost compared to similar devices within budget	dollars
Low cycle time	Cycle duration allows for immediate use of sanitized materials	minutes

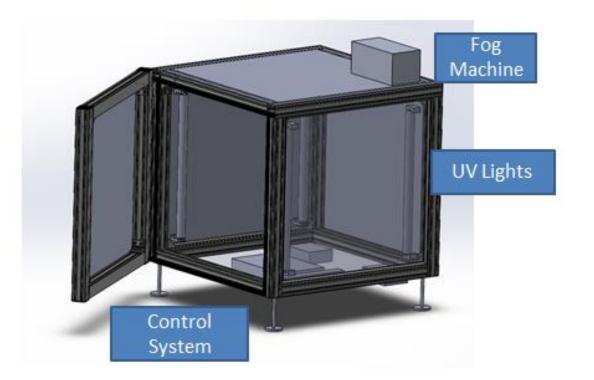
Angel Soto

CONSTRAINTS

- Ease of Use
 - o Complies with door size standards (3'x3'x6')
 - o Acceptable cycle time (15 minutes)
 - o Cycle ends automatically
- No Ethylene Oxide (EtO)
- Temperature less than 120°C

SANITIZING METHODS

From research, numerous methods were found that sanitize and sterilize equipment in the food and medical field.


- Autoclave Steam at high temperature and pressure
- Chemical spray Exposure to germicidal chemicals
- Infrared light Specific wavelength generates heat
- Laser exposure Germicidal light for precision use
- Ultraviolet (UVC) light Germicidal light exposure

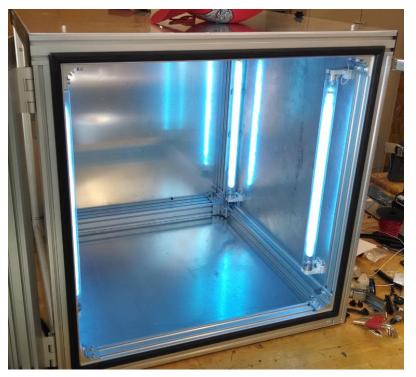
PROPOSED DESIGN

- Dual process:
 - \circ Vaporized hydrogen peroxide (H₂O₂)
 - o UVC light
- Fog machine used to vaporize the H_2O_2
- UVC lights degrade H_2O_2 to safe levels
- Free hydroxyl radicals, OH-, that are strong oxidizing agents, degrade additional toxins.
- Aluminum chamber- not reactive with H_2O_2


ARIZONA UNIVERSITY

PROPOSED DESIGN

Jacob Blackburn


PROTOTYPE

Jacob Blackburn

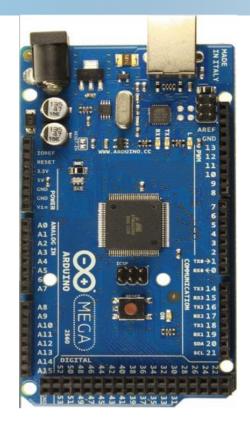
PROTOTYPE

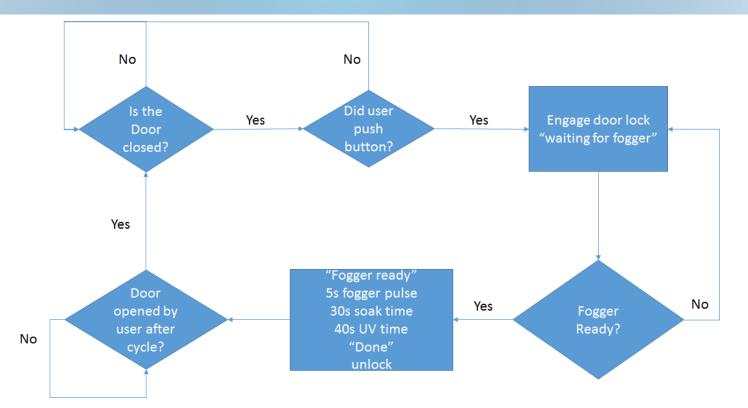
4 UVC lights installed

Fogging unit on the back panel

Jacob Blackburn

SAFETY COMPONENTS


- Sealant around the door and panels
- Safety Switch
- Magnetic Lock
- PET Plastic window that protects user from UVC light
- Emergency Button



CONTROL SYSTEM

- Arduino Mega
 Microcontroller
- Will run code and logic for automated process and user interface

LOGIC FLOW CHART

Dangxian Zha

CONTROL SYSTEM

- Start Button
- Emergency Button
- Safety Switch
- Magnetic Lock
- Fog Machine
- UVC Lights
- LCD/LED

FIRST ROUND OF TESTING

Run	Components	Time	Concentration	Results
1	H ₂ O ₂ UV lights	none 5 minutes	N/A 4 light bulbs	78% of 1 log
2	H ₂ O ₂ UV lights	30 seconds5 minutes	0.5 mg/L 4 light bulbs	88% of 1 log
3	H ₂ O ₂ UV lights	30 seconds5 minutes	3 mg/L 4 light bulbs	93% of 1 log

OPTIMIZATION

	Level		
Factor	Min	Max	
A. UV Light Intensity	4 light bulbs	8 light bulbs	
B. UV Light Run Time	1 minute	5 minutes	
C. H ₂ O ₂ Concentration	0.5 mg/L	3 mg/L	
D. H ₂ O ₂ Soak Time	30 seconds	5 minutes	

	Level		
Factor	Min	Max	
A. UV Light Run Time	1 minute	5 minutes	
B. H ₂ O ₂ Soak Time	30 seconds	5 minutes	

Lauren Kieffer

SECOND ROUND OF TESTING

Run	Components	Time	Concentration	Results
4	H ₂ O ₂ UV lights	30 seconds60 seconds	3 mg/L 4 light bulbs	>10,000%
5	H ₂ O ₂ UV lights	5 minutes 1 minute	3 mg/L 4 light bulbs	>10,000%
6	H ₂ O ₂ UV lights	5 minutes 5 minutes	3 mg/L 4 light bulbs	>10,000%

THIRD ROUND OF TESTING

	Run	Components	Time	Concentration	Results
	7	H ₂ O ₂ UV lights	30 seconds40 seconds	3 mg/L 8 light bulbs	>10,000%
Run 7: Hemostat Run 8:Tackle Toolbox Run 9: Notebook	8	H ₂ O ₂ UV lights	30 seconds40 seconds	3 mg/L 8 light bulbs	3000%
	9	H ₂ O ₂ UV lights	30 seconds40 seconds	3 mg/L 8 light bulbs	98% of 1 log

FINAL PROTOTYPE

OBJECTIVES AND CONSTRAINTS

	Customer Requirements	Design Specifications	Reasoning and justification	Quantity or Pass/Fail	Actual
	<u>CLEANLINESS</u> <u>STANDARD</u> reduce the bioburden levels	Process effectively inactivates <i>Bacillus</i> <i>atropheaus</i> spores	Medical studies measure contaminant levels in log units	1 log unit reduction	6 log reduction
	<u>SAFETY</u> No harmful	Physical components do not cause user harm	OSHA employee safety guidelines	pass/Fail	pass
c sa Ar	materials Users are not at risk of exposure to sanitizing source Applicable OSHA	Chemical concentration	Allowable substance exposure from OSHA standard	H ₂ O ₂ : 1 ppm (8 hour exposure) 75 ppm short term	10-50 ppm short term
	safety standards met	Electrically grounded	User electrical guidelines from OSHA standards	pass/fail	pass

Robertson Beauchamp

OBJECTIVES AND CONSTRAINTS

	Customer Requirements	Design Specifications	Reasoning and justification	Quantity or Pass/Fail	Actual
		Duration of process	Compared to common autoclave	15 minutes	1.5 minutes
	EASE OF USE Short cycle time Cycle ends automatically	Control System	automatically executes process	pass/fail	pass
	when complete Easily transported	weight	Human lifting average	75 lbs	80 lbs
	by one person	width	Fits through doorways and on counters	3 feet	2 feet
	SANITIZE VARIOUS MATERIALS e.g. Tackle Box	Temperature	Avoid melting of common polymers	120° ¢	<100 °C
	Cleanroom Notebook Hemostats	Does not saturate material	Prevents pourous materials from absorbing substances	pass/fail	pass
Robertson Beauchamp	BUDGET	Cost to generate design prototype	Client specified	\$3,000	<\$2100

COST ANALYSIS

Sub-System	Components	Cost	Sub-System	Components	Cost
Chamber			Fogger		
	Frame	\$536.94		Fog machine	\$70.00
	Al Panels	\$180.00		Tubing/wiring/mounting HW	\$41.23
	Door	\$267.02		Testing materials	\$64.33
	Misc. and finishing hardware	\$146.86			
			Control system	l de la construcción de la constru	
UV Lighting				Arduino (+kit)	\$208.00
0 0	Lights	\$195.36		Relays	\$13.58
	Ballasts	\$33.98		Buttons/wiring	\$85.94
	Light holders/wiring	\$49.22		AC to DC transformer	\$35.98
		<i>ų</i> 13.22		Lock	\$32.66
			Total		\$1,961.10

CONCLUSION

Through the testing and results, all but one of the requirements were met under the given constraints.

ARIZONA

Other systems would be implemented such as a humidity sensor and UVC light check.

The size of the chamber is fully scalable and can be modified for smaller or larger applications allowing for more portability or larger items.

Further optimization testing would result in a shorter cycle time.

References

Braz. J. Chem. Eng. vol.30 no.3 São Paulo July/Sept. 2013, "Inactivation of Bacillus atrophaeus spores in healthcare waste by UVC light coupled with H2O2", 2012

Koninklijke Philips Electronics N. V., TUVC T8, May 2013.

Occupational Safety and Health Administration, General Industry 29 CFR 1910: Hazardous and Toxic Substances, U. S. Department of Labor

Sridhar Rao PN, Sterilization and Disinfection, 2009.

W.L. Gore, Portable Sanitization Chamber for Medical Manufacturing Use, 2013.

QUESTIONS

