

# Payload Separation System

### **UGRADS** Presentation

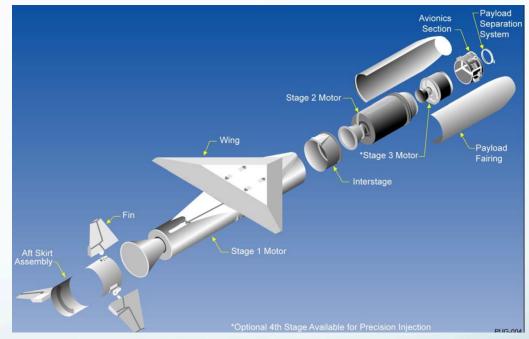
Benjamin Dirgo, Mark Majkrzak, Jason McCall, Matthew Mylan, Kate Prentice, Alen Younan

April 25, 2014



## Overview

- Client
- Current PSS System
- Problem Formulation
  - Needs and Goal Statement
  - Objectives
- Failure Analysis
- Final Design and Manufacturing


- Testing
  - Three weight tests
  - Reliability testing
- Cost Analysis
- Improvements
- Conclusion



- Orbital Sciences Corporation
  - Lead Mechanical Engineers: Steven Hengl, Matthew Johns
  - Stakeholders: Companies/Agencies whom contract with Orbital Sciences

# Current PSS System

- Launch vehicle: Pegasus
- Issues:
  - Substantial shock to payload
  - Costly
  - Subcontracting to manufacture PSS



www.orbital.com

## **Problem Formulation**

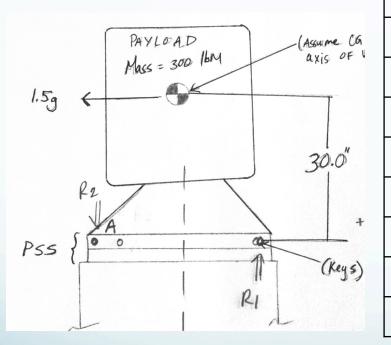
- Design, analyze, build, and test a less expensive payload separation system that delivers payloads into orbit with minimal shock to the payload.
- Improve:
  - Decrease number of parts while still retaining reliability
  - Decreasing cost
  - Allow for manufacturing at Orbital
  - Reduce shock to payload

## **Needs and Goal Statement**

• Need:

The payload separation systems today are too expensive and put a large shock due to vibration on the payload.

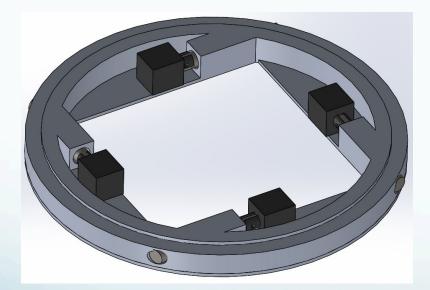
• Goal:


Design a less expensive payload separation system that can separate consistently on command with little to no impact to the payload.

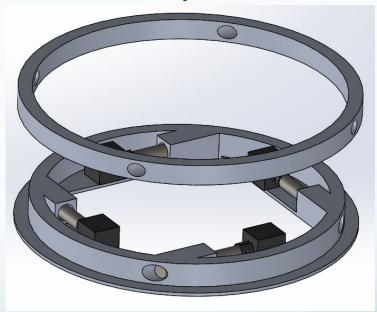
# Objectives

| Objective                 | Measurement Basis                         | Unit |
|---------------------------|-------------------------------------------|------|
| Separate Payload          | Number of successful releases             | %    |
| No Debris                 | Number of fragmented pieces at separation | n/a  |
| Minimal Shock             | Impact force                              | lbf  |
| Structural Capabilities   | Material properties                       | n/a  |
| No Re-contact             | Push away reliably                        | %    |
| Light-weight              | Minimal load factor to rocket             | lb   |
| Fit Pegasus Dia.          | 23" or 38"                                | in   |
| Ease of Assembly          | Reduce man hours to assemble              | hr   |
| Special Tools to Assemble | No special tools to assemble              | n/a  |
| Mass added to Payload     | Payload ring weight                       | lb   |

7


## Failure Analysis



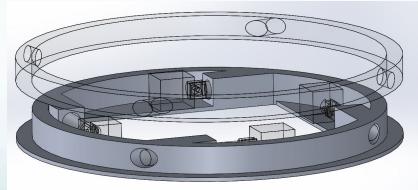

| Acceleration [ft/s <sup>2</sup> ]           | 134.5   |
|---------------------------------------------|---------|
| G's                                         | 4.2     |
| Force/Key [lb]                              | 313.3   |
| Force Due to Moment/Key [lb]                | 1125    |
| Shear (Keys) [lbf/in-s <sup>2</sup> ]       | 7325.4  |
| Shear Yield (Key) [lb/in-s²]                | 42456   |
| Factor of Safety (Keys)                     | 5.8     |
| Tear Out (PR) [lb/in-s²]                    | 11064.1 |
| Bearing Stress (PR) [lb/in-s <sup>2</sup> ] | 4639.8  |
|                                             |         |

# **Final Design**

Engaged



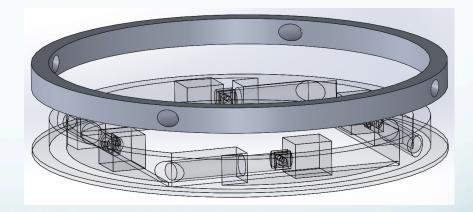
**After Separation** 




# **Rocket Ring**

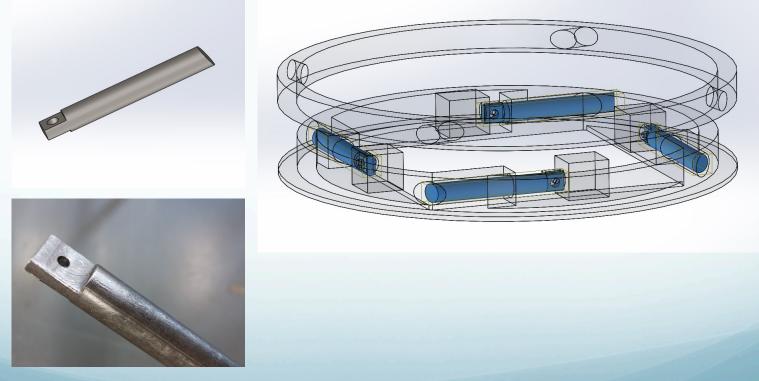
- G-code in Haas
  - Milled out center square plate with contour path
  - Milled out pockets for base plate and key housing
- Turned off ears of outer square plate with lathe




- Turned outer lip using lathe
- Hand milled key holes in the housing
- Cut shallow recess for spring using hand mill



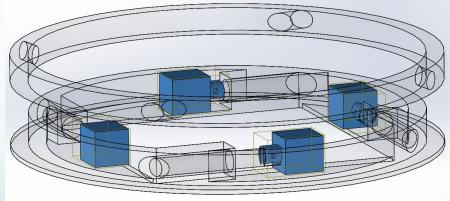
# **Payload Ring**


- Begin with 12" x 12" x 1" Al
- G-code generated by CAMWorks in SolidWorks
  - Contour path cuts out inner diameter
  - Outer diameter turned on a lathe



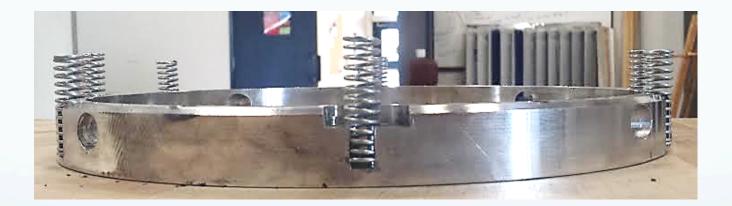





- Round 0.49'' dia. steel stock
- Drill pin hole into tab for solenoid attachment
- Cut diagonal edge to be flush with outer payload ring



## Solenoids


- Steel keys are secured to the plunger
- Fabricated mounting brackets
- Solenoids are bolted to base plate
- Wiring





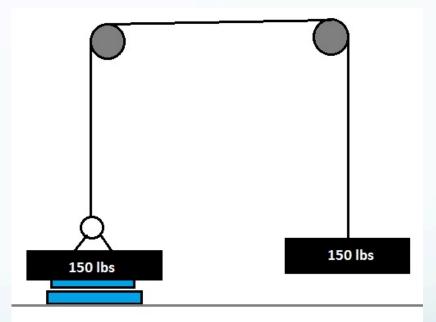
# Springs

- Eight Coil Springs placed symmetrically along the lip of the rocket ring
- The springs will sit in the recessed holes on the lip of the rocket ring



# Testing

• Three situations to be tested:


1. Prove keys can withstand max g's in longitudinal direction

Prove complete separation at half scale of a 300lb
load with minimal shock

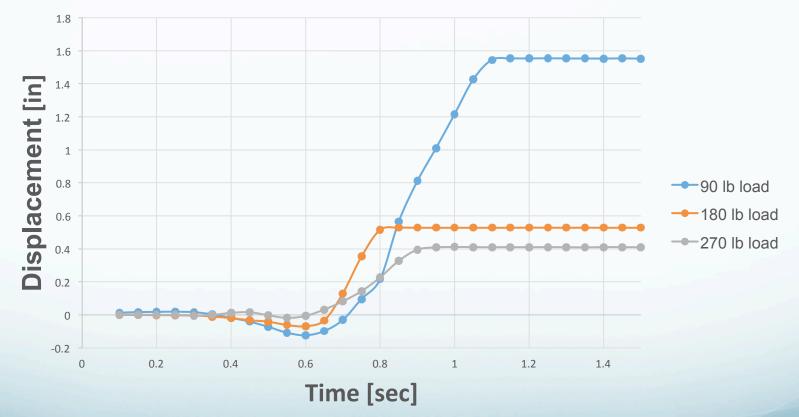
3. Ensure solenoid actuation reliability

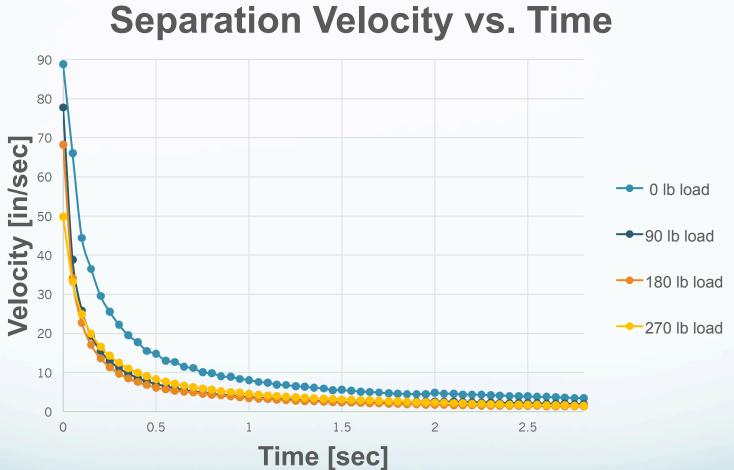
# **Testing Apparatus**

- Pulley system attaches the P.S.S. to the equal amount of weight countering the system.
- Once balanced, the solenoids will deploy and the system will separate.

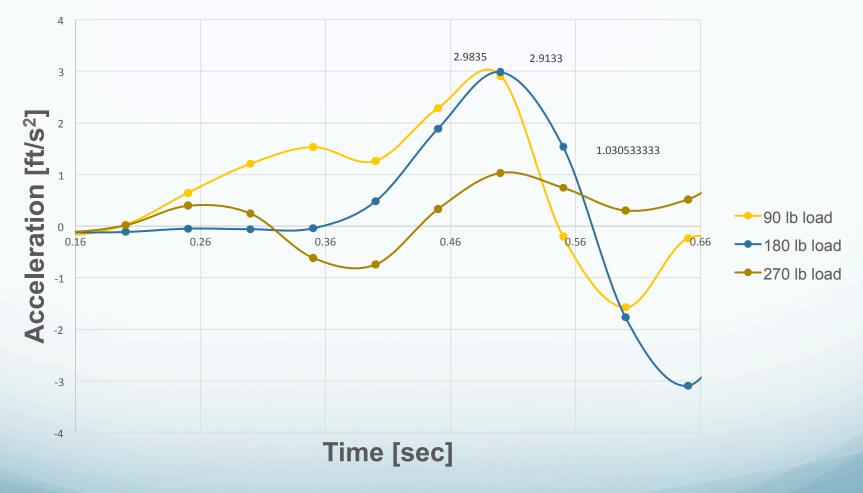


## Separation & Reliability Test





Mark Majkrzak

17


## **Testing Results**

### **Displacement vs. Time**



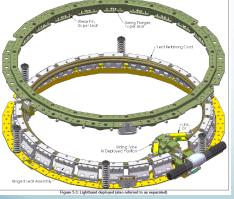


### **Acceleration vs. Time**



# Bill of Materials

• For one 12'' diameter Payload Separation System


• Budget – \$1000

| Material                             | Quantity | Unit Cost |
|--------------------------------------|----------|-----------|
| 7075 Aluminium plate 24" x 48" x 1"  | 1        | \$654.24  |
| K & M Machine Tool Inc.              | N/A      | \$65.00   |
| Carbon Steel Key 0.5" dia x 48" long | 1        | \$14.95   |
| Solenoid                             | 4        | \$28.00   |
| Springs                              | 8        | \$0.75    |
| Testing Equipment                    | N/A      | \$266.59  |
| Total Cost                           |          | \$1118.78 |
|                                      |          |           |

### Current Payload Bystem Vs. Team Orbital's Payload System

- Weight: 40 lbs.
- Parts: 1000+
- Total Cost: \$550,000
- Separation Velocity: 2.1 ft/s
- Acceleration at Separation: 5.3





www.planetarysystems.com

• Weight: 8 lbs.

- Parts: 18
- Total Cost: \$3278.78
- Separation Velocity: 0.5 ft/s
- Acceleration at Separation: 0.04



4/22/14

Benjamin Dirgo

## Conclusion

- The mission is to design a Payload Separation System for Orbital Sciences Corp. that is reduced in price and parts while still retaining reliability.
- Manufactured a prototype at half scale to confirm reliability of proposed improvements.
- Initial tests confirmed design flaws existed in springs and keys.
- Retested to ensure successful modifications to solenoids, springs, and keys.
- Final testing results achieved successful and reliable separation while meeting design constraints and objectives.

# Acknowledgements

### **Orbital Sciences Corporation**

• Advisers: Matthew Johns, Steven Hengl

### **Kinetic Structures**

• President: Harry Artenian

### E.M.J. Corporation

• Contact; Steve Warner

### K&M Machine Tool Inc.

### Professors to thank:

- Dr. Srinivas Kosaraju
- Dr. Robin Tuchscherer
- Dr. John Tester

### Machine Shop Staff:

- Tom Cothrun
- Emerson Jones
- Chris Bennett
- Nick Jurik



### KINETIC STRUCTURES An Industry Leader In Wire Mesh Products





### References

[1] Kyle, Ed. "Space Launch Report 2012 Launch Stats." *Space Launch Report 2012 Launch Stats*. N.p., 29 Dec. 2013. Web. 05 Dec. 2013. < <u>http://www.spacelaunchreport.com/log2012.html</u>>.

[2] Philpot, Timothy A. *Mechanics of Materials: An Integrated Learning System*. 5th ed. Hoboken, NJ: John Wiley, 2011. Print.

[3] Rao, Singiresu S. *Mechanical Vibrations*. 5th ed. Upper Saddle River, NJ: Prentice Hall, 2011. Print.

[4] Baldwin, Bryan. "Pegasus User's Guide." Orbital Sciences, 1 Apr. 2010. Web. 5 Dec. 2013.

25

## Thank you for listening,

# QUESTIONS?

Benjamin Dirgo