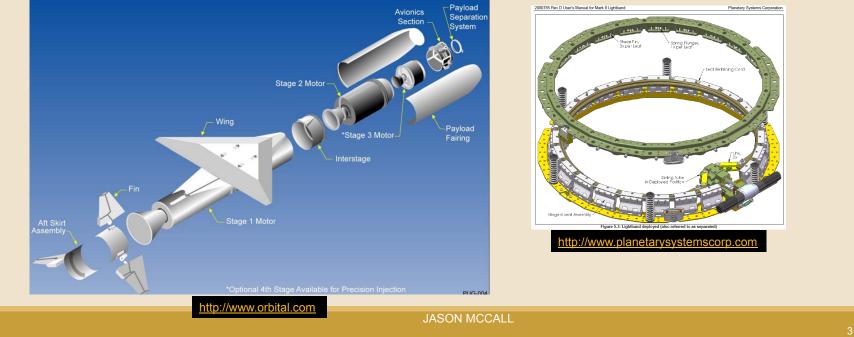
Payload Separation System

Problem Formulation and Project Plan

BENJAMIN DIRGO, MARK MAJKRZAK, JASON MCCALL, MATTHEW MYLAN, KATE PRENTICE, ALEN YOUNAN

OCTOBER 8, 2013

ARIZONA


Overview

Payload Separation System Clients/Stakeholders Need/Goal Statement Objectives Requirements Constraints Quality Function Deployment Working Environment Gantt Chart Conclusion References

JASON MCCALL

Payload Separation System

Design, analyze, build, and test a payload separation system that delivers payloads into orbit with minimal shock to the payload.

Orbital Sciences Corporation

Client:

Orbital Sciences Corporation

- Mary Rodgers
 - Electronic Packaging and Actuators Manager

Stakeholders:

Companies/Agencies whom contract with Orbital

BEN DIRGO

Need and Goal Statement

Need:

The payload separation systems today are too expensive and put a large vibrational shock on the payload.

Goal:

Design a less expensive payload separation system that can separate consistently on command with little to no impact to the payload.

BEN DIRGO

Objectives

Objective	Measurement Basis	Unit
No Debris	Number of fragmented pieces at separation	n/a
Reliable	Percent complete separation during test trials, with timely separation	%
Manufacturability	Realistic feasibility of manufacturers	n/a
Minimal Shock	Impact force	Ν
Remain Intact	Material properties	eds
Light-weight	Minimal load factor to rocket	kg
Simplicity	Number moving and stationary parts	n/a

MARK MAJKRZAK

Major Requirements

Weight

Cost

Parts of the payload separation system

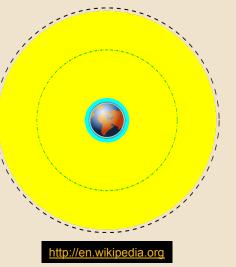
Separation Reliability

Material Properties

Damage (deflection)

MARK MAJKRZAK

Quality Function Deployment


Engineering Requirements								
			Engine	ering Red	quiremei	nts		
-		Customer Weights	eight	st	Parts (PSS)	Separation Capability	5. Material Properties	Damage (deflection)
Scale 1, 3, 6, 9 (best)	Ojectives 1. No Debris	Custo	1. Weight	2. Cost	w 3. Pai	9 4. Sej	9 5. Ma	ه 6. Da
	2. Reliability	9			6	9	9	9
	3. Manufacturability	6	3	9	9			
	4. Shock	9				9		6
	5. Remain Intact	6			9			
	6. Light Weight	3	9		3		3	
	7. Simplicity	6		9	9	3		
		Raw Score	45	108	243	216	126	189
		Relative Weight [%]	4.85%	11.65%	26.21%	23.30%	13.59%	20.39%
		Unit of Measure	lb	\$	ul*	ft	lb/ft^2	in
		*ul = unitless						

KATE PRENTICE

Working Environment

Orbit:

- Geocentric orbit = 35,786 kilometers
- GPS Satellites

KATE PRENTICE

Constraints

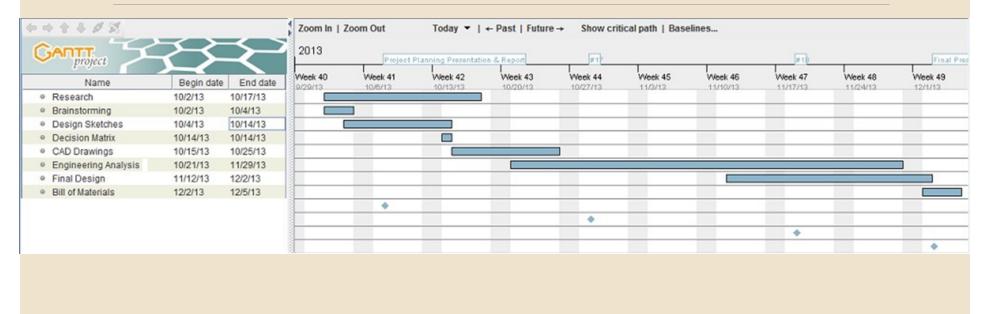
Materials must withstand:

- Mach Number >1 (supersonic speed)
- Height (h) = 400 nmi
- Velocity (v) = 24,550 ft/s
- Lateral frequency > 20Hz
- Weight of payload > 126 kg (can withstand a max load of 485 kg)

MATTHEW MYLAN

Constraints continued...

Low profile


Less expensive

Want to improve on weight, given the payload diameter:

Adaptor Diameter	Weight of Adaptor
23 in (59cm)	6.0 lbm (2.7 kg)
38 in (97cm)	8.7 lbm (4.0 kg)

MATTHEW MYLAN

Gantt Chart

Conclusion

Payload Separation System Clients/Stakeholders Need/Goal Statement Objectives, Requirements, Constraints Quality Function Deployment Working Environment Gantt Chart

References

Walter, Holmans. N.p.. Web. 7 Oct 2013. http://www.planetarysystemscorp.com/

Baldwin, Bryan. "Orbital." *Orbital Pegasus Guide*. Orbital, n.d. Web. 7 Oct 2013. http://www.orbital.com/NewsInfo/Publications/Pegasus_UG.pdf>.

Wikipedia. "Satellite." Web. 7 Oct 2013 http://en.wikipedia.org/wiki/Satellite#Orbit_types

Thank you for listening,

QUESTIONS?