

Payload Separation System

Midpoint Review

Benjamin Dirgo, Mark Majkrzak, Jason McCall, Matthew Mylan, Kate Prentice, Alen Younan

March 6, 2014

Overview

- Final Design
 - Payload Ring
 - Rocket Ring
 - Solenoids
 - Keys
 - Kickoff Springs
- Back Up Plan
- Final Failure Analysis

- Testing
 - Key and PR Failure
 - Separation and Reliability
 - Spring Testing
- Bill of Materials
- Gantt Chart
 - Spring 2014
- Conclusion
- References

Final Design

Engaged

After Separation

Alen Younan

Payload Ring

- Begin with 12" x 12" x 1" Al
- G-code generated by CAMworks in SolidWorks
 - Contour path cuts out inner diameter plate
- Outer diameter turned on a lath

Rocket Ring

- Similar to Payload Ring
- G-code in Haas
 - Milled out center square plate with contour path
 - Milled out pockets for base plate and key housing
- Turned off ears of outer square plate with lathe
- Turned outer lip using lathe
- Hand milled key holes in the housing
- Cut shallow recess for spring using hand mill

Solenoid

- Steel keys will be secured to the plunger
- Solenoids will be bolted to base plate
- Purchased from Newark element14
 - 4801 N Ravenswood Ave, Chicago, IL 60640

Keys

- Round 0.49'' dia. steel stock
- Drill pin hole into tab for solenoid attachment
- Cut diagonal edge to fit into 0.5" hole

Kickoff Springs

- 4 Kick off Springs placed symmetrically along the lip of the rocket ring
- Donated by Kinetic Structures in Phoenix, AZ
 - Contact: Harry Artenian, President
- The springs will sit in the recessed holes on the lip of the rocket ring

Back up Plan

- Partially ridged system allows for manipulation of keys given movement in others
 - Protects against failing solenoid
 - Ensure separation

Failure Analysis

Acceleration [ft/s ²]	134.5
G's	4.178
Force/Key [lb]	313.3
Force Due to Moment/Key [lb]	1125
Shear (Keys) [lbf/ins ²]	7325.4
Shear Yield (Key) [lb/ins ²]	42456
Factor of Safety (Keys)	5.796
Tear Out (PR) [lb/ins ²]	11064.1
Bearing Stress (PR) [lb/ins ²]	4639.8

Testing

• Two Situations and springs that need to be Tested:

1. Prove keys can withstand max g's in longitudinal and lateral directions

- 2. Prove complete separation at half scale of a 300lb load with minimal shock
- 3. Find load application, desired spring constant, and damping coefficient of mesh springs

Key & PR Failure Test

- 500 KIP hydraulic ram to provide load and feedback
- Tested under tension
 - RR lip not allowing for compression test
 - Results will not be changed

Separation & Reliability Test

- Pulley system attaches the P.S.S. to the equal amount of weight countering the system.
- Once balanced, the solenoids will deploy and the system will separate.

Spring Testing

- Testing in Rm 117 with Dr. Tuchscherer
- 500 KIP hydraulic ram as a place holder
- Load cell and Rams are connected to DAQ
- Testing for:
 - Loading application, F
 - Spring Stiffness, k
 - Unloading rate, c
 - Plastic deformation, e

14

Bill of Materials

• For one 12'' diameter Payload Separation System

• Budget – \$1000

Material	Quantity	Unit Cost
Carbon Steel Key 0.5" dia x 3' long	1	\$15.00
7075 Aluminium plate 24" x 48" x 1"	1	Donated
Solenoid	4	\$39.10
Nuts/ Bolts/ Misc.	TBD	\$50.00
K & M Services	N/A	\$65.00
Total Cost		\$286.40

Gantt Chart: Spring 2014

Conclusion

- Used SolidWorks models to effectively communicate changes in the final design, manufacturing, and new back up plan
- Performed additional analysis caused by g's in longitudinal and lateral directions on payload
- Reviewed future testing plans for PSS failure and separation
- Re-calculated a bill of materials
- Updated project plan and reviewed using a Gantt Chart

[1] "Online Metal Store." *Online Metal Store* | *Small Quantity Metal Orders* | *Metal Cutting, Sales & Shipping* | *Buy Steel, Aluminum, Copper, Brass, Stainless* | *Metal Product Guides at OnlineMetals.com.* ThyssenKrupp Materials, NA Company, n.d. Web. 05 Dec. 2013. <<u>https://www.onlinemetals.com/merchant.cfm?pid=10435</u>>.

[2] "Online Metal Store | Small Quantity Metal Orders | Metal Cutting, Sales & Shipping | Buy Steel, Aluminum, Copper, Brass, Stainless | Metal Product Guides at OnlineMetals.com." *Online Metal Store* | *Small Quantity Metal Orders* | *Metal Cutting, Sales & Shipping* | *Buy Steel, Aluminum, Copper, Brass, Stainless* | *Metal Product Guides at OnlineMetals.com*. ThyssenKrupp Materials, NA Company, n.d. Web. 05 Dec. 2013. <<u>https://www.onlinemetals.com/merchant.cfm?pid=13317</u>>.

[3] "TRINAMIC QSH4218-51-10-049 STEPPER MOTOR, 1.8DEG, 1A, 0.49NM." *Trinamic Stepper Motor*. Newark Element 14, 1 Jan. 2013. Web. 05 Dec. 2013. < http://www.newark.com/trinamic/qsh4218-51-10-049/stepper-motor-1-8deg-1a-0-49nm/dp/24M6628?CMP=AFC-OP>.

[4] "Home Improvement." *Home Improvement Made Easy with New Lower Prices* | *Improve & Repair*. Home Depot, n.d. Web. 5 Dec. 2013. <<u>http://www.homedepot.com/b/webapp/catalog/servlet/HomePageView?storeId=10051</u>>.

[5] Kyle, Ed. "Space Launch Report 2012 Launch Stats." *Space Launch Report 2012 Launch Stats.* N.p., 29 Dec. 2013. Web. 05 Dec. 2013. <<u>http://www.spacelaunchreport.com/log2012.html</u>>.

[6] Philpot, Timothy A. Mechanics of Materials: An Integrated Learning System. 5th ed. Hoboken, NJ: John Wiley, 2011. Print.

[7] Rao, Singiresu S. Mechanical Vibrations. 5th ed. Upper Saddle River, NJ: Prentice Hall, 2011. Print.

[8] Baldwin, Bryan. "Pegasus User's Guide." Orbital Sciences, 1 Apr. 2010. Web. 5 Dec. 2013.

Thank you for listening,

QUESTIONS?