

Payload Separation System

Final Proposal

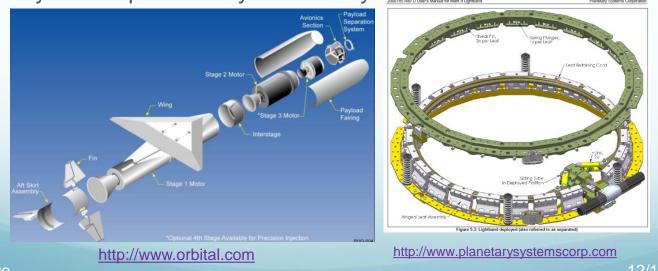
Benjamin Dirgo, Mark Majkrzak, Jason McCall, Matthew Mylan, Kate Prentice, Alen Younan

December 10, 2013

Overview

- Review
- Objectives
- Quality Function Deployment
- Concept Generation
- 5 Initial Designs
- Design Matrix
- Final Design and Components

- Analysis
 - Solenoids
 - Shear on Key
 - Kick off Springs
- Costs
- Gantt Chart
 - Fall 2013
 - Spring 2014
- Conclusion
- References



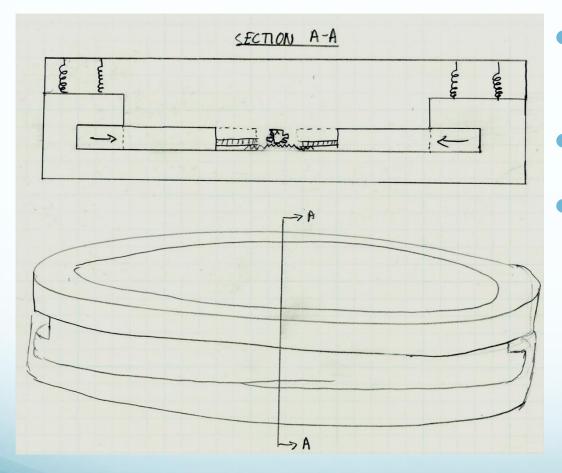
- Problem Statement:
 - Design, analyze, build, and test a less expensive payload separation system that delivers payloads into orbit with minimal shock to the payload.
- Client:
 - Orbital Sciences Corporation
 - Mary Rogers: Electronic Packaging and Actuators Manager
 - Stakeholders: Companies/Agencies whom contract with Orbital Sciences

Need and Goals Statement

• Need:

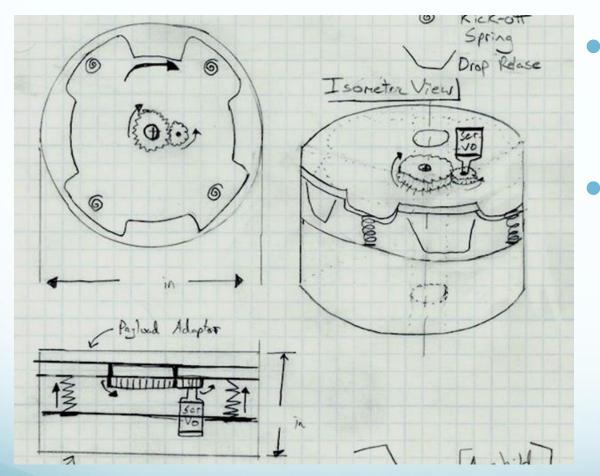
- The payload separation systems today are too expensive and put a large shock due to vibration on the payload.
- Goal:
 - Design a less expensive payload separation system that can separate consistently on command with little to no impact to the payload.
- Payload Separation System Today:

Ben Dirgo

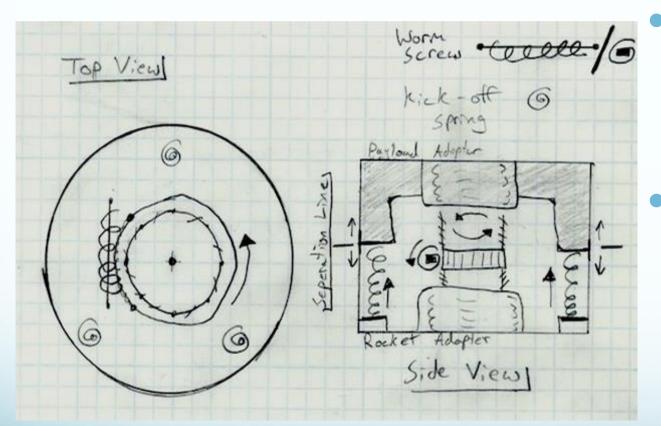

Objectives

Objective	Measurement Basis	Unit
Separate Payload	Number of successful releases	n/a
No Debris	Fragmented pieces after separation	n/a
Minimal Shock	Impact force	Ν
Structural Capabilities	Material properties	$\sigma \varepsilon \Delta$
No Re-contact	Push away reliably	n/a
Light weight	Light weight materials added to rocket	kg
Fit Pegasus dia.	23" or 38"	in
Ease of Assembly	No extra man hours to assemble	hr
Special Tools to Assemble	No special tool to assemble	n/a
Mass added to payload	Payload ring weight	kg

Quality Function Deployment


			Engineering Requirements		ts	
Scale 1, 3, 6, 9 (best)	Ojectives	Customer Weights	1. Minimum Tolerances	2. Cost	3. Part Count	4. Lead Time
1.	Separate Payload	9	9	9	3	
2.	No Debris	9			6	
3.	Minimal Shock	6		9	1	
4.	Structural Capabilities	9	6	6		
5.	No Re-contact	9		3		
6.	Light Weight	6		6	9	1
7.	Fit Pegasus Demensional Constraints	9	9	1	3	3
8.	Ease of Assembly	3	9	6	9	1
9.	Special Tools to Assemble	3	9	9		9
10.	Mass Added to Payload	9		uu	1	
		Raw Score	270	306	204	63
		Relative Weight [%]		the state of the state of the	24.20%	7.47%
		Unit of Measure	+/- mm	\$	ul*	min
		*ul = unitless				

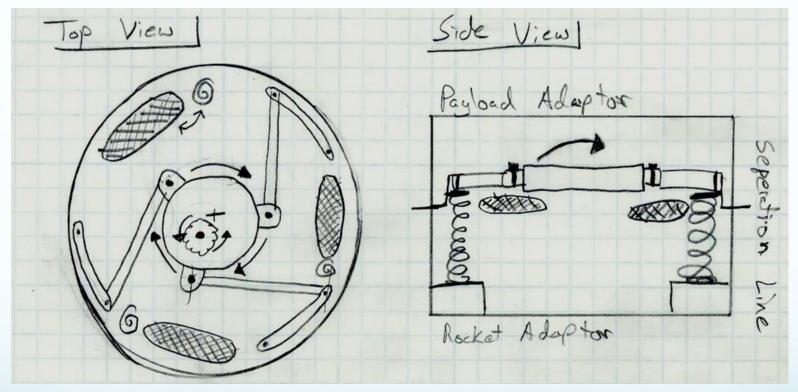
Interlock Concept


- Servo driven interlock panels
- Spring Loaded
- Relatively light weight

Blender Concept

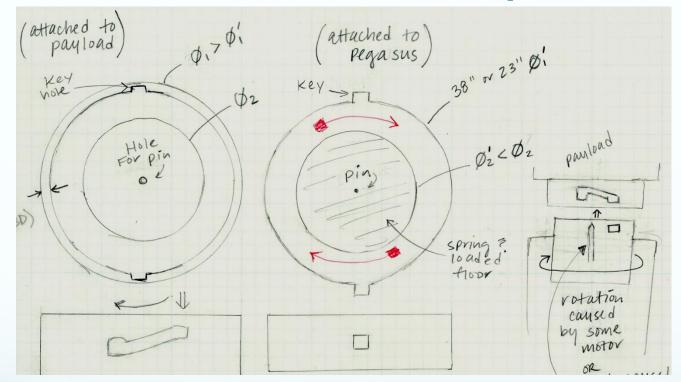
- Four toothed gear rotates via servo motor
- Once gears are in unlock position the springs are free to separate payload

Worm Concept



Through bolt holds payload to rocket

Worm bolt rotates until payload is free


Jason McCall

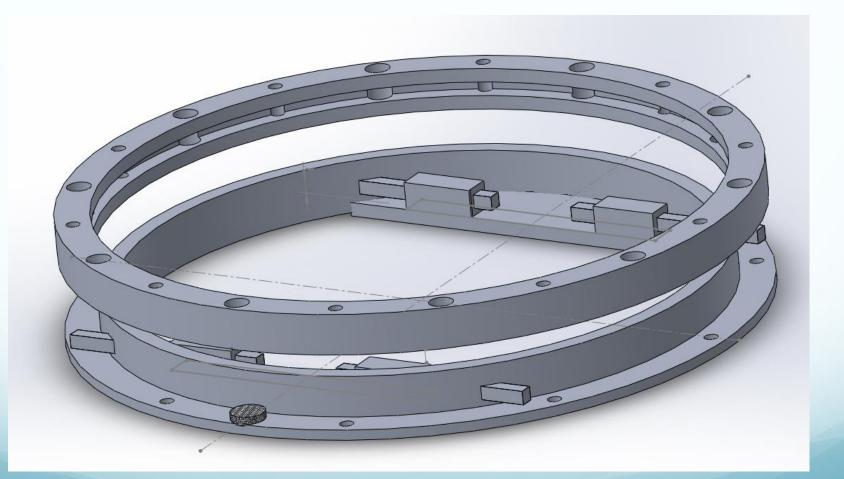
Tangent Spoke Concept

- Servo motor turns center shaft
- Spokes travel along slots until the plate has rotated in position for the springs to separate payload

BNC Concept

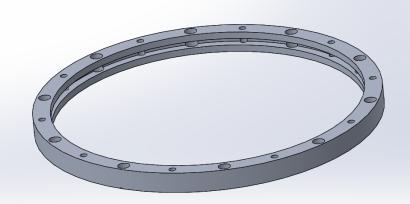
 Motor rotates inner cylinder releasing larger cylinder attached to the payload

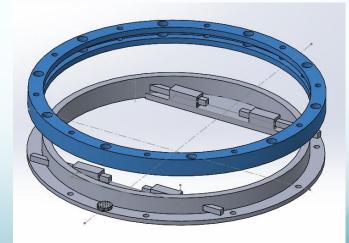
Preloaded springs under floor push away the payload


Design Matrix

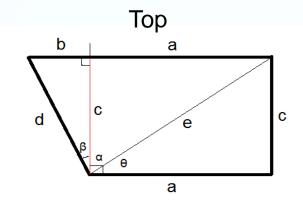
scale 1, 3, 6, 9 Best	Weight	Interlock Solution 1	Blender Solution 2	The Worm Solution 3	Tangent Spoke Solution 4	BNC Solution 5
Part Count	6	6	9	3	1	9
Minimal Shock	9	3	3	6	1	1
Cost	6	6	3	1	3	6
Manufacturability	6	9	9	1	1	9
Debris	9	9	9	6	9	9
Separate Payload	9	9	3	9	6	9
Weight	3	6	1	6	6	3
Ease of Assembly	3	6	9	6	3	6
Structural Capability	9	6	6	6	6	6
Mass Added to Payload	9	9	1	3	9	1
2	Score	486	354	336	336	405

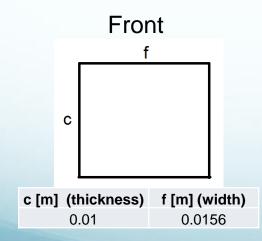
Final Design Overview

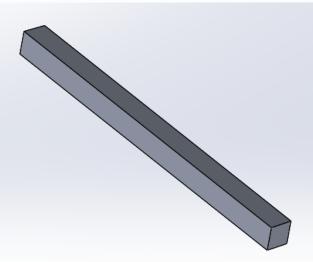

- Payload Ring (PR)
- Rocket Ring (RR)
- Keys
- Solenoids
- Metallic Mesh Kickoff Springs

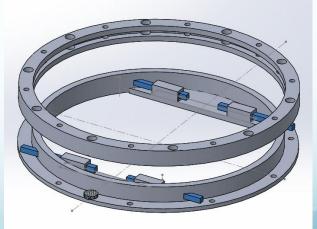

Final Design

Payload Ring

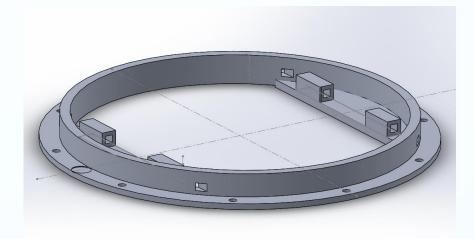

- Ring with channel on interior surface
- ~2400g = 5.29lb
- Holes drilled to reduce weight
 - Will increase manufacturing time
- Manufactured from one solid Aluminum plate

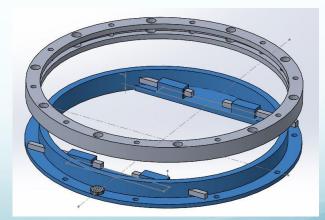



Kate Prentice

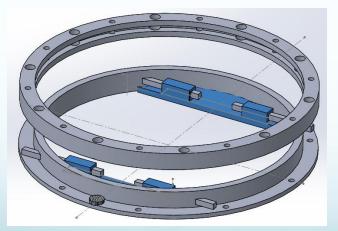


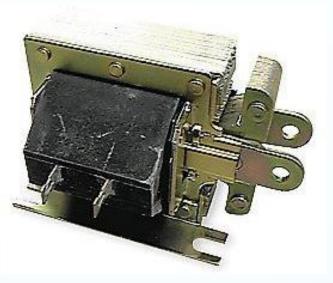
e [m]	a [m]	θ [rads]	θ [Deg]	α [Deg]	β [Deg]
0.0125	0.0075	0.927	53.1	36.8	50.1
d [m]	β [rad]	b [m]			
0.0156	0.874	0.011			




Mass = 42grams = .09lb

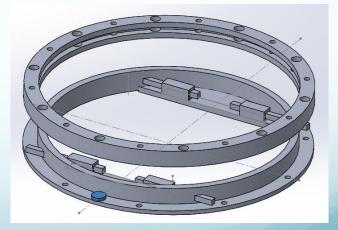
Rocket Ring


- Ring with two mounting plates
- ~3300g = 7.27lb
- Hollow housing for keys
- Cut from one solid plate of aluminum
- Recess' cut to house kickoff springs



Solenoid

- Mass: 1 lb
- Pull force range: 64 128 oz
- Stroke range: 1/8" 1"



http://www.grainger.com/category/mechanic al-solenoids/solenoids/electrical/ecatalog/N-8f3

Metallic Mesh Kickoff Springs

 6 Kick off Springs placed symmetrically along the lip of the rocket ring

Bill of Materials

• For one 23" diameter Payload Separation System

Material	Quantity	Unit Cost
7075 Aluminum Key 3/8'' x 3/8'' x 24''	1	\$2.52
7075 Aluminium plate 24" x 48" x 1"	1	¢654 04
Solenoid	4	\$654.24 \$32.75
Nuts/ Bolts/ Misc.	TBD	\$50.00
Total Cost		\$837.76

Man Power Cost

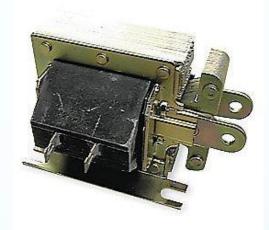
Team Members	Pay (\$/hr)	Rocket Ring Fabrication (hr)	Payload Ring Fabrication (hr)	Key Fabrication (hr)	Assembly (hr)	
Matthew Mylan	20	10	10	2		
Mark Majkrzak	20	10	10		1	
Kate Prentice	20	10	10			
Alen Younan	20			4	1	
Ben Dirgo	20			4	2	
Jason McCall	20	10	10			
	Total Cost (\$)	800	800	200	80	1880

Manufacturing Costs

- All manufacturing will be in building 98C machine shop
- Costs will only include:
 - Bill of materials
 - Cost of man power

Engineering Analysis Overview

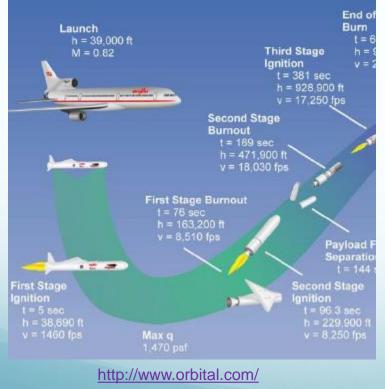
- Static
- Dynamic
- Material Selection
- Machine Design


- Solenoid Analysis
- Shear Force on Keys
- Metallic Mesh Kickoff Springs

Solenoid Analysis

- 1 Solenoid for each Key
 - 4 keys

Cost per Solenoid: \$32.75


Кеу	Solenoid
Key Weight [lb]	Solenoid Weight [lb]
0.09	1
Needed Key Pull Force [oz]	Solenoid Pull Force Range [oz]
1.4815	64 - 128
Key retraction [in]	Stroke Range [in]
0.394	0.125 - 1

http://www.grainger.com/category/mechanic al-solenoids/solenoids/electrical/ecatalog/N-8f3

Failure Due to Shear Forces on Keys

- Note: Q = 0 once left earths atmosphere
- $Q_{max} = \frac{1}{2}\rho V^2$
 - ρ= local air density [m³/kg]
 - V= vehicles velocity [m/s]

Mark Majkrzak

Q_{max} **[N/m²]** 70383.6

Top Surface Area of Key [m²] 0.000134867

> Force due to Q_{max} [N] 2.37

Shear Modulus [Pa] 5.93 x 10⁷

Factor of Safety 5.58

The 7075 Aluminum keys will not fail due to shear force caused by the first stage ignition process.

17595.9

Q_{max} per Key [N/m²]

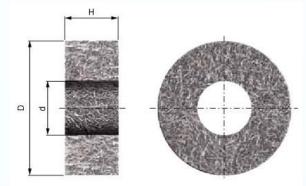
Cross Sectional Area [m²] 0.000156

Force due to M_{payload} [N] 6169.21

Shear Modulus Failure [Pa]

3.31 x 10⁸

Metallic Mesh Kickoff Springs


D [mm] 22

d [mm]

6.3

H [mm]

- Material: AISI 304 Stainless Steel
- Temperature range: -90°C to +400°C
- Rocket Ring Lip: 25 mm
- Max Load of damped spring: 500 N
- Max Payload (600lb): 2640 N
 - Need 6 springs
- Static Deflection: 5.5 mm
- Weight: 7 g

http://www.weforma.com/fileadmin/pdf/1213/We forma-Metal-Cushions-12-13.pdf

http://www.weforma.com/fileadmin/pdf/1213/We forma-Metal-Cushions-12-13.pdf

Mark Majkrzak

Metallic Kickoff Springs Continued

- Natural Frequency (f_n) : 15 20 Hz
- Stiffness per damped spring (k): 110.54 N/m

k [N/m]

716283.2

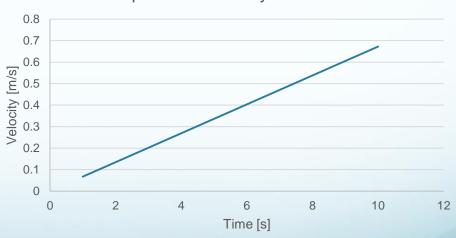
4

x [m]

0.0055

• Mass of payload: 600 lb = 272.15 kg

m [kg]


45.36

c [Ns/m]

21822.0384

a [m/s²]

0.067

Separation Velocity vs. Time

[Hz]

20

ζ [ul]

1.91421356

2

F [N]

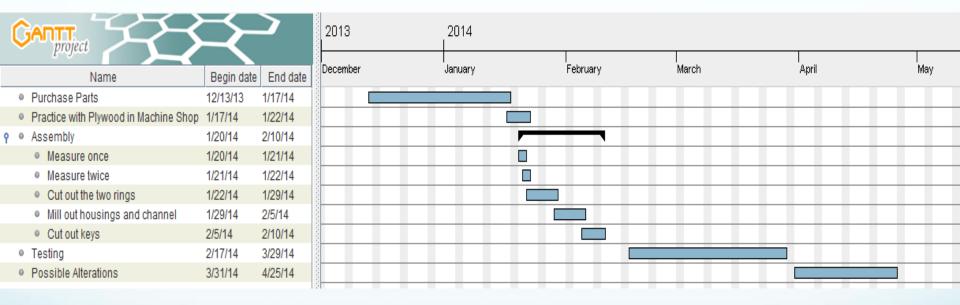
3939.56

[rad/s]

125.7

[Ns/m]

11400.00198


V [m/s]

0.69

Gantt Chart: Fall 2013

Gantt Chart: Spring 2014

Conclusion

- Reviewed the problem, need, and goal statement as well as the client
- Covered the Quality Function Deployment and why the objectives were important
- Reviewed Concept Generation and 5 initial design concepts
- Finalized the design using a design matrix
- Used SolidWorks models to draw and effectively communicate the final Design
- Initial separation caused by retracting the four keys using four Solenoids and metallic mesh kickoff springs to completely separate
- Performed an analysis on the keys, solenoids, and metallic mesh
- Calculated a recorded manufacturing costs, a bill of materials, and man power cost
- Explained the past, present, and future plans using Gantt Charts

References

[1] "Online Metal Store." Online Metal Store | Small Quantity Metal Orders | Metal Cutting, Sales & Shipping | Buy Steel, Aluminum, Copper, Brass, Stainless | Metal Product Guides at OnlineMetals.com. ThyssenKrupp Materials, NA Company, n.d. Web. 05 Dec. 2013. <<u>https://www.onlinemetals.com/merchant.cfm?pid=10435</u>>.

[2] "Online Metal Store | Small Quantity Metal Orders | Metal Cutting, Sales & Shipping | Buy Steel, Aluminum, Copper, Brass, Stainless | Metal Product Guides at OnlineMetals.com." *Online Metal Store | Small Quantity Metal Orders | Metal Cutting, Sales & Shipping | Buy Steel, Aluminum, Copper, Brass, Stainless | Metal Product Guides at OnlineMetals.com.* ThyssenKrupp Materials, NA Company, n.d. Web. 05 Dec. 2013. <<u>https://www.onlinemetals.com/merchant.cfm?pid=13317</u>>.

[3] "TRINAMIC QSH4218-51-10-049 STEPPER MOTOR, 1.8DEG, 1A, 0.49NM." *Trinamic Stepper Motor*. Newark Element 14, 1 Jan. 2013. Web. 05 Dec. 2013. <<u>http://www.newark.com/trinamic/qsh4218-51-10-049/stepper-motor-1-8deg-1a-0-49nm/dp/24M6628?CMP=AFC-OP</u>>.

[4] "Home Improvement." *Home Improvement Made Easy with New Lower Prices | Improve & Repair*. Home Depot, n.d. Web. 5 Dec. 2013. <<u>http://www.homedepot.com/b/webapp/catalog/servlet/HomePageView?storeId=10051</u>>.

[5] Kyle, Ed. "Space Launch Report 2012 Launch Stats." *Space Launch Report 2012 Launch Stats.* N.p., 29 Dec. 2013. Web. 05 Dec. 2013. <<u>http://www.spacelaunchreport.com/log2012.html</u>>.

[6] Philpot, Timothy A. Mechanics of Materials: An Integrated Learning System. 5th ed. Hoboken, NJ: John Wiley, 2011. Print.

[7] Rao, Singiresu S. Mechanical Vibrations. 5th ed. Upper Saddle River, NJ: Prentice Hall, 2011. Print.

[8] Baldwin, Bryan. "Pegasus User's Guide." Orbital Sciences, 1 Apr. 2010. Web. 5 Dec. 2013.

Thank you for listening,

QUESTIONS?

Alen Younan