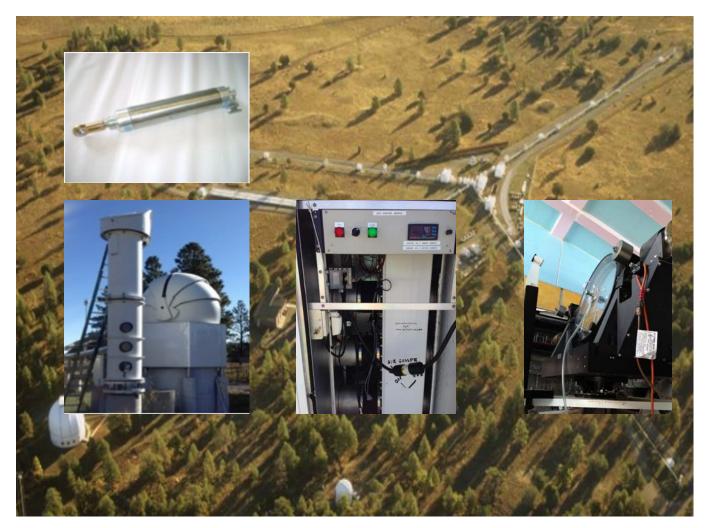
NPOI Nitrogen Distribution

Wyatt Huling, Amelia Fuller, and Scott Ryan

April 25, 2014

Amelia Fuller


Overview

- Introduction
- Problem formulation
- Proposed design
- Prototype fabrication
- Testing and results
- Cost analysis
- Conclusion

Navy Precision Optical Interferometer

- Map astrometric position for navigation and satellites
- Array telescope
 - 250m arms
 - Stations along arms utilize nitrogen
- Nitrogen is more reliable than compressed air

Navy Precision Optical Interferometer

Project Goals and Needs

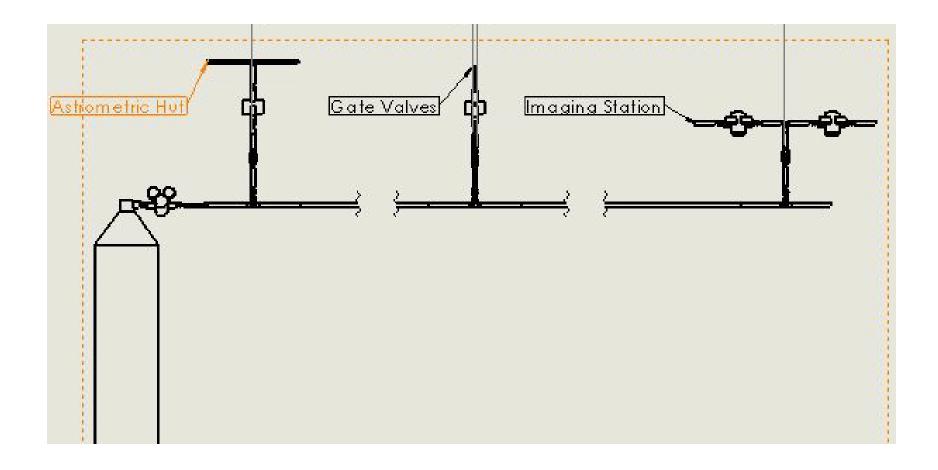
- Nitrogen distribution system that requires less maintenance at a lower cost than the current system.
- Provide proper flow rate and pressure to each device.
- Supply nitrogen to all devices on site:
 - 10 imaging stations per arm
 - 1 astrometric hut per arm & 1 in center
 - 1 gate valve station per arm
- Utilize 1000L liquid nitrogen Dewar tank

Constraints

	Pressure [PSI]	Volumetric flow rate [CFH]
Astrometric hut	9	0.5
Gate valves	40	22
Imaging station actuators	40	18

Operating Environment

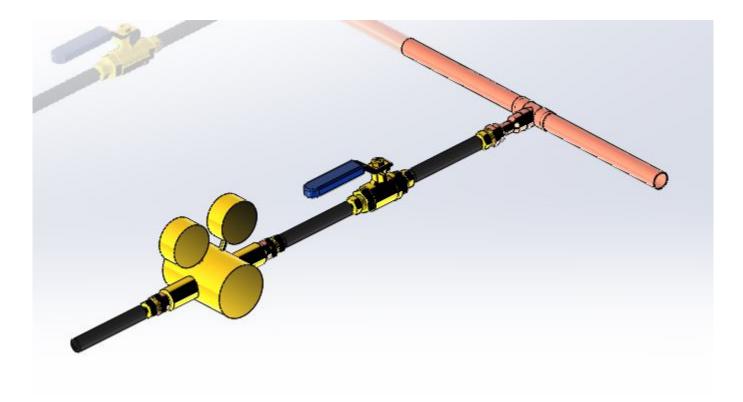
- Operate between temperatures of -20°F to 120°F
- Nitrogen supply lines must be able to handle vibrations and contact with cable tray.
- System is exposed to wind, rain, snow, ice, and UV light.

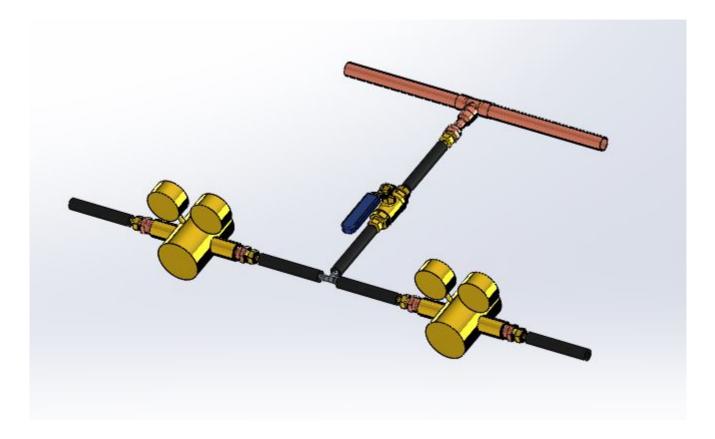

Proposed Design

- Cleaned and capped copper tubing
 - ½in tubing size
 - Easily bent into shape due to soft temper
 - Solder fittings at all joints
- Brass fittings to convert branch flow to ¼in barb
- ¼in polyvinyl hose from supply line to device

Proposed Design continued

- In-line regulator for each device
- ¼in ball valve
 - Most efficient manual valve
 - Smallest pressure drop
- 5-gallon reservoir tank prior to gate valves
 - Same volume as 405ft of ½in tubing


Design Drawing


Astrometric Hut

Gate Valve

Imaging Station

Engineering Analysis

•
$$Q = \frac{V \times P_{abs}}{28.8 \times t \times P_{atm}} \left[\frac{in^3}{s}\right]$$

- *P_{atm}*= 11.3PSI at 7000ft
- Gate valves require 22CFH
- Imaging station actuators require 18CFH
- Max flow rate= 21CFH at 300m

Numerical Analysis

- Several aspects of array affect pressure drop:
 - Tubing length
 - Flow rate
 - Loss coefficient of valves and tees
 - Curves in cable tray
- MATLAB code built around Darcy-Weisbach equation

MATLAB Code

•
$$\Delta P = f_d \frac{L}{d} \frac{\rho V^2}{2}$$

• f_d = Friction factor from Colebrook equation

•
$$\frac{1}{\sqrt{f}} = -2\log_{10}\left(\frac{\epsilon}{3.7D} + \frac{2.51}{Re\sqrt{f}}\right)$$

•
$$Re = \frac{\rho VD}{\mu}$$

•
$$V = \frac{Q}{\pi r^2}$$

• E= Relative roughness

Material Selection

- Maximum pressure drop in 300m tube:
 - -0.436in→ 5.97PSI
 - -0.555in→ **1.95PSI**
 - -0.680in→ 0.77PSI

Thermal Expansion

- Change in length due to change in temperature
- $\Delta L = L_o \alpha (T_{install} T_{min})$
- Coefficient of thermal expansion for copper α =9.3x10⁶/°F
- ΔL= 7.03in

Expansion Loops

• Absorbs the change in length to reduce stress

•
$$L = \frac{1}{12} \left(\frac{3E}{\sigma_{max}} \right)^{\frac{1}{2}} (d_o \Delta L)^{\frac{1}{2}}$$

• L= 16.1in= $\pi D \rightarrow D$ = 5.12in

Prototype Description

- 100 ft. section of west arm
- Contains one of each:
 - Astrometric hut
 - Gate valves
 - Imaging station
- Coil to simulate entire arm
- Reservoir tank for gate valves

Prototype Fabrication

- Copper tubing was installed in cable tray
- Majority of soldering was performed indoors to prevent cold joints
- 3-gallon tank was used due to availability
 - Affected pressure drop when actuating gate valves
- Angle valves were used instead of ball valves
 - Loss coefficient for angle valve= 2
 - Loss coefficient for ball valve= 0.2

Prototype Testing

- The prototype successfully performed all necessary tasks
- Gate valves had slight delay due to 3-gallon tank
- Imaging station actuators responded quickly

Prototype Results

- Pressure drop was calculating while operating pneumatic actuators
- Predicted pressure drop= 0.37PSI
- Actual pressure drop= 0.50PSI
- Error= 36%
- Adjusted final pressure drop= 2.65PSI

Cost Analysis of Operation

- 1000L Dewar has gaseous equivalent volume equal to 86 tanks
- Total cost to refill tanks: \$35.00x30= \$1050.00
- Cost to refill Dewar tank= \$1000.00
- Nitrogen cost is projected to be ~1/3 of current system

Cost of Prototype

- Prototype had budget of \$500.00
- The cost of materials came just under this \$500.00
- All materials were already located on site, no expense for the NPOI staff

Final Design Bill of Materials

Item	Quantity	Cost (\$)	Total Cost
100ft copper roll	35	202.80	7098.00
50ft polyvinyl hose	5	44	220.00
1∕₂in tee	37	1.45	53.65
¹ ∕₂in coupling	35	0.37	12.95
¼in ball valve	37	8.27	314.26
¹ ∕₂in tube- ¹ / ₈ in female NPT	37	2.62	96.94
¹ / ₈ in male NPT-¼in barb	37	1.20	44.40
Hose clamps	140	0.72	100.80
Mounting clamps	320	0.42	135.17
¼-20 SS316 Bolt	320	0.29	92.80
¼-20 SS316 Washer	320	0.08	26.40
5-gallon reservoir tank	3	84.99	254.97
Harris regulator	13	85.09	1106.17
¹ / ₄ -20 Nylock nut	320	0.19	59.26
Total cost			9556.51

Conclusion

- The Navy Precision Optical Interferometer is in need of an updated nitrogen supply system.
- New designs must operate with the same parameters as the current system (i.e. same pressures and flow rates).
- Copper and polyvinyl were chosen based on cost, resilience, efficiency and effectiveness.
- Engineering analysis shows 2.65PSI drop over 300m length with proper flow rates on the final design.

Conclusion Continued

- A smaller scaled prototype, built on site, has given successful results on operation of all devices 200ft away from source.
- With the prototype proven, the cost of all materials for the final design is \$9556.51.

References

- Navy Precision Optical Interferometer. http://ast.noao.edu/facilities/other/npoi
- Fundamentals of Fluid Mechanics (7th edition). Munson, Okiishi et all. (2013). Danvers, Ma. Wiley & Sons, Inc.

Questions?