NPOI Nitrogen Distribution Concept Generation and Selection

Amelia Fuller, Wyatt Huling, and Scott Ryan

October 30, 2013

Overview

- Project Overview
- System description
- Tubing selection
- Distribution style
- Valve selection
- Conclusion

NPOI

- Maps the location of stars
- Requires nitrogen to operate actuators and keep debris off mirrors

System Description

- 1000L Dewar tank of nitrogen at center
- 3 300m runs of tubing
- 11 manifolds with 5 ports on each run
- Manual valve prior to each manifold
- 10CFH at 60PSI in each run

Copper

- Available as cleaned and capped
- Thin wall thickness (0.032in)
 - Vibrations
 - Punctures
- Solder joints

Cerro Flow Products

316 Stainless Steel

- Strong
- Extremely resistant to outside elements
- Butt weld fittings

Micah & Co.

Scott Ryan

EPDM Tubing

- Low cost
- Available with crimped fittings

Weighting Criteria

	Current Supply	Cost	Ease of Installation	Maintenance	Environmental Constraints		Final Weight
Current supply	0	0	0	0	0	0	0
Cost	1	0	0	0	0	1	11%
Ease of Installation	1	1	0	0	0	2	22%
Maintenance	1	1	1	0	0	3	33%
Environmental Constraints	1	1	1	0	0	3	33%

Supply Line Decision Matrix

	Cost	Ease of Installation	Maintenance	Resistance to Surrounding	
Copper	4	3	5	4	4.07
316 Stainless Steel	1	2	4	5	3.52
EPDM	3	5	3	3	3.41
	11%	22%	33%	33%	

Tee to Manifold

- Tee from main line to 5 port manifold at each location
- Requires:
 - 11 valves
 - 11 tees
 - 11 tubes from tee to manifold
 - 11 tube to FPT fittings
 - 11 manifolds

Tee to Manifold Example

Individual Tees

- Has 5 individual tees in supply line at each location
- Requires:
 - 55 valves
 - 55 tees
 - 55 tubes from tee to regulato
 - 55 tube to FPT fittings

Flow Through Manifold

- Manifold is installed directly into supply line
- Requires:
 - 11 valves
 - 11 manifolds
 - 55 MPT to pipe fittings
 - 55 pipe to FPT fittin(

www.directpex.com

Flow Through Manifold Example

System Configuration

	Cost	Ease of Installation	Maintenance	Resistance to Surroundings	
Tee to Manifold	3	3	5	5	4.07
Individual Tees	2	1	2	2	1.65
Flow Through	2	2	3	3	2.53
	11%	33%	22%	33%	

Shutoff Valve

- Must be free flowing
- Easy to shutoff
- Inexpensive

$$Equivalent \ length: L_{eq} = \frac{K_L D}{f}$$

Minor losses:
$$h_L = K_L \frac{V^2}{2g}$$

Ball Valve

- Easiest to operate
- Most efficient
- K= 0.05

Gate Valve

- Adjustable flow rate
- Relatively free flowing
- K= 0.15

Angle Valve

- Useful if sharp bend at location
- Restrictive
- K= 2

NIBCO

Wyatt Huling

Valve Decision Matrix

	Cost	Ease of Operation	Maintenance	Flow Restriction	
Ball Valve	4	5	3	5	4.4
Gate Valve	3	3	2	4	3.08
Angle Valve	3	3	2	3	2.75
	11%	33%	22%	33%	

Tubing Size Decision

- Tubing size is dependent on flow rate and allowable pressure drop
- Pressure drop is dependent on equivalent length, diameter, fluid properties, and Reynold's number

Tubing Size Equations

Pressure Loss:
$$\Delta P = f \frac{L_{eq}}{D} \frac{\rho V^2}{2}$$

$$V = \frac{Q}{A}$$

Friction factor, *f* is obtained from the Moody diagram using the Reynold's number

$$Re = \frac{\rho VD}{\mu}$$

Tubing Calculation

```
>> Tubingsize
What is diameter?0.311
How many tees?11
How many valves?11
What is line pressure?60
Equivalent length=
  301.9618
Total Pressure Drop
   22.0117
>> Tubingsize
What is diameter70.436
How many tees711
How many valves?11
What is line pressure?60
Equivalent length=
  302.5099
Total Pressure Drop
    4.4621
```

Gantt Chart

Teak Nama	Sep 29	Oct 6 Oct 13		Oct 20	Oct 27	Nov 3	
Task Name	TWTFSSM	T W T F S S M	TWTFS	SMTWTFS	S M T W T	FSSMTWTF	
Contact Client						Contact Client	
Tour Facility	Tour Facility						
Contact Client routinely						Contact Client routinely	
Identify Client needs		Identify Client needs	3				
Project Constraints		Project Constraints					
Identify Goals of Project		Identify Goals of Project					
Needs Statement		Needs Statement					
Project report update		Project report updat	e				
Design Selection						Design Selection	
Research Materials Needed			Re	search Materials Needed			
Design collaboration			De	sign collaboration			
Modify/Select Design				Modify/Select Desig	gn		
Review Design with Client						Review Design with Client	

Conclusion

- Copper tubing will be used due to corrosion resistance, cost, and low maintenance.
- A tee will supply a 5 port manifold at each location due to simplicity, cost, and low maintenance.
- Ball valves will be used because they are less restrictive and easier to operate than the others.

References

- Copper tube. Cerro Flow Products. <u>http://www.cerroflow.com/hvac%20oxy%20med</u>
- 316 Stainless Steel. Micah & Co. http://www.micahandco.com.au/
- Brass ball valve. ZORO Tools. <u>http://www.zorotools.com/g/00063714/k-G2560293?utm_source=google_shopping&utm_medium=cpc&utm_campaign=Google_Shopping_Feed&kw={keyword}&gclid=CJvjzLvQv7oCFQN1QgodiTAAQw
 </u>
- Brass gate valve. Sears plumbing. <u>http://www.sears.com/shc/s/p_10153_12605_SPM1774671214P?ci_src=184425893&ci_sk</u> <u>u=SPM7271890305&sid=IDx20130125xMPTLSx025</u>
- 5 Outlet brass manifold. CHI Company. <u>http://www.chicompany.net/index.php?main_page=product_info&products_id=2331</u>
- Brass angle valve. NIBCO. <u>http://www.nibco.com/Valves/Globe-and-Angle-Valves/Bronze-Angle-Valves/S-311-Y-Angle-Valve-Bronze-Class-125-Solder/</u>
- EPDM Hose. Spray Parts Warehouse. <u>https://spraypartswarehouse.com/epdm-spray-hose/10031600-1/4-epdm-hose-pricing/foot/</u>
- CO2/Nitrogen Manifold. Brew Tree. http://www.brewtree.com/catalog/item/786216/387315.htm