Problem Formulation and Project Plan

Electric Torque Machines Inc.

Adam Zagorsky, Brandon Leffler, Colin Blakesley, Ethan Dyer, Jeremy Reynolds

Dyer

10/7/13

Overview

- Client Information
- Need Assessment
- Project Goal
- Currently Used Process
- Objectives
- Constraints
- Quality Function Deployment
- Project Schedule
- Conclusion

10/7/13

2

Electric Torque Machines, Inc.

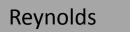
- New class of BLDC known as transverse flux motors
- Flux path is transverse instead of parallel to rotor motion
- Low-resistance coil, high pole count
- Low-RPM/High-Torque Applications

What they need...

- Reduce production time of bicycle hub motor
- Motor rotor shell assembly currently takes 15 minutes
- A large portion of that time is the loading of magnets and concentrators

Bike Motor

Source: (http://etmpower.com)



Need Statement

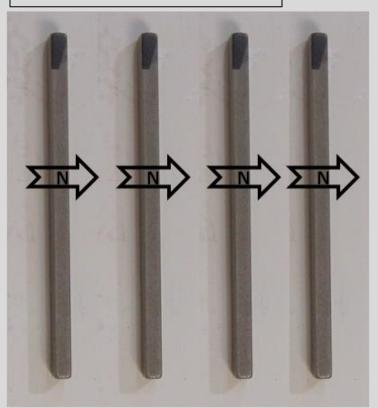
Loading magnets and concentrators takes too long

Finished Rotor Assembly

Assembled Rotor

Magnets as Packaged

Magnets as Packaged



Zagorsky 10/7/13

Magnets

Marked Magnets

Mandrel

Mandrel

Zagorsky 10/7/13

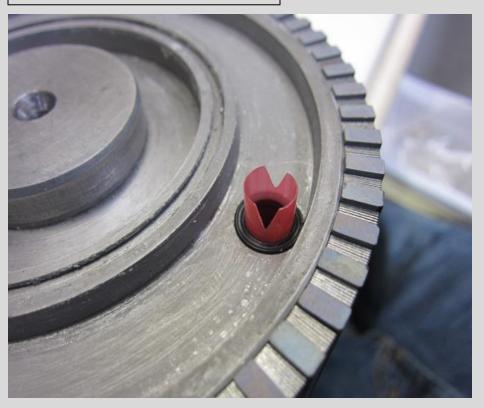
Mandrel and End Caps

Mandrel Loaded with Magnets and Concentrators

Loaded Mandrel

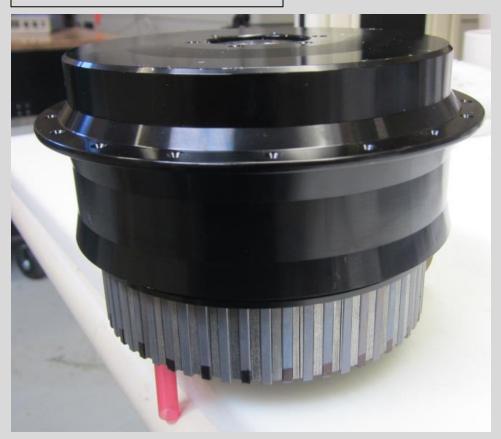
Mandrel without End Caps

Loaded Mandrel



Potting the Rotor

Epoxy Straw in Mandrel

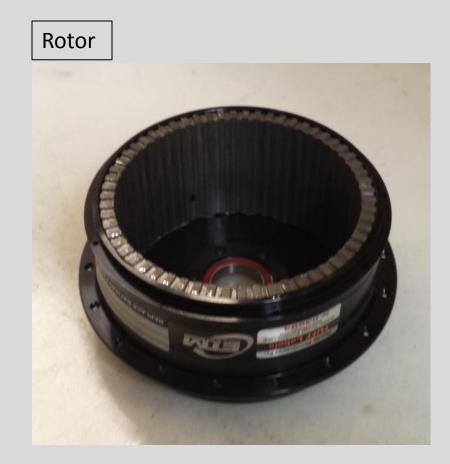


Inserting Mandrel Into Rotor Shell

Mandrel and Shell



Preparation for Oven


Rotor Lid

Rotor

Zagorsky 10/7/13

Goal Statement

 Design a system/process that decreases magnet and concentrator loading time.

Zagorsky

10/7/13

Objectives

- The magnets and concentrators must be loaded in less time than the existing processes is capable of
- The system must be inexpensive to build, operate, and maintain
- The magnets and concentrators must be precisely loaded into motor casing in terms of axial and rotational alignment

Constraints

- Entire system must fit on workbench
- The system must be operable by one person
- The magnets and concentrators must remain intact
- Magnets must be aligned within X degrees of the rotational axis of the motor
- The runout between the magnet ends must be Xmm or less.

QFD

Engineering Objectives

		Cost to Build	Cost to Operate	Cost of Maintenance	Material Strength	Time	Space	Weight	Precision
Fit on Work Bench							Х	Х	
Process completion in < 5 min.			Х			Х			Х
Aesthetics									
Meets OSHA Requirements		Х	Х		Х				
Ease of Operation			Х			Х	Х	Х	
System Lifespan		Х	Х	Х	Х				
Concentrator Alignment		Х				Х			Х
Magnet Alignment		Х				Х			Χ
Magnet Condition		Х				Х			Х
	Unit of Measure	\$	\$/yr	\$/yr	MPa	min	ft^2	lbs.	mm.
	Technical Target	TBD	TBD	TBD	TBD	5	2'x2'x4'	200lbs.	

Leffler

QFD Explanation

- Importance of objectives
- Correlations the objective has with the customer requirements
- A higher correspondence = more importance

Leffler

10/7/13

Project Schedule

	Weeks										
	Oct	Oct	Oct	Oct	Nov	Nov	Nov	Nov	Dec		
Task Name:	7-13	14-20	21-27	28-3	4-10	11-17	18-24	25-1	2-8		
Concept											
Generation	C										
Concept											
Selection											
Magnet											
Analysis											
Alternative											
Design Analysis											
Final Design											
Analysis											
Proposal											
Generation											

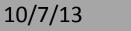
Conclusion

- Client Need
- Project Goal
- Currently Used Process
- Objectives
 - Decrease time, low cost, high precision
- Constraints
 - Space, operability, magnet location and condition



Conclusion Cont.

- Quality Function Deployment
- Project Schedule


References

- <u>www.etmpower.com</u>
- Jerry Crawley, Director of E-bike at ETM

