

MSMA LATERAL LOADING DEVICE

PROGRESS REPORT

Presented by: Matthew Batten, Cody Burbank, Jonathan McCurdy, Thaddeus Grudniewksi, & Joy Weber January 27, 2014

NORTHERN ARIZONA UNIVERSITY

Overview

- I. Problem Identification
- **II.** Project Description
- III. Design Concepts
 - a. Force Sensing Device
 - b. Actuation Devices
- IV. Cost Comparison and Product Decision
- V. Project Planning
 - a. Team Member Responsibilities
 - b. New Project Timeline
- VI. Conclusion
- VII. References

Problem Identification

- Dr. Ciocanel
 - Associate Professor at Northern Arizona University
 - Conduct research on Smart Materials, (MSMA's)
 - Wants to expand his testing process to include compressive force in the third dimension
 - Operates at room temperature in a laboratory setting

Solidworks Model of Instron Machine

Jonathan McCurdy

Project Description

- Construction of a device capable of laterally loading up to 200 N
- Work within a \$2500 budget
- Fit within 10mmx12mm area under a magnetic field
- Provide feedback control

Experimental Setup for MSMA Testing

Design Concepts

- Space limitations require design to be outside 10mmX12mm area
- Similar setup so focus shifts to
 - Actuation
 - Force Sensing

Basic System Apparatus [2][3]

Strain Gauge Force Sensor

- Measures strain through voltage via deflection of wires attached to material.
- For this application the strain gauge will need to be high precision while also not being high cost.
- Due to this, the selected strain gauge is the Honeywell Model 11.

Basic Strain Gauge [4]

Electromechanical Actuation

- Ultramotion Digit NEMA 17
- Uses stepper drive for control
- Can be customized to meet project needs

Electromechanical Actuator Cutaway [2]

Piezoelectric Actuation

- Meets requirements with high resolution
- Requires power supply and piezo controller

Option 1

- THORLABS PAZ015 series piezo-actuator
- Capable of high resolution location-based feedback
- Requires additional Strain Gauge Reader

Option 2

- THORLABS PAS015 series piezo-actuator
- Does not include feedback

Piezo-actuator with feedback control [5]

Piezo-actuator without feedback control [5]

Cost Comparison

Component	EM	PE1	PE2	Cost
Digit NEMA 17 Stepper	X			\$620.00
ST5-S Stepper Drive	X			\$360.00
THORLABS PAS015 Piezo-Actuator			x	\$1463.48
T-Cube Piezo Controller		X	X	\$595.00
THORLABS PAZ015 Piezo-Actuator		X		\$1933.85
T-Cube Strain Gauge Reader		x		\$545.00
Power Supply		X	X	\$105.00
Model 11 Load Cell*	X	x	X	\$771.00
6061 Al Rod, 1" Diameter, 3' Length	X	X	X	\$19.34
6061 Al, ¼" x 6" x 3'	X	X	X	\$35.46
Flathead Screw, 5 pack	X	x	x	\$5.24
Wing Nuts, 25 pack	X	X	X	\$7.21
Socket Head Cap Screw, 25 pack	X	X	Х	\$5.61
Set Screw, 25 pack	X	Х	х	\$3.76
Total Cost	\$1056.62	\$3255.47	\$2240.10	

Cody Burbank

*Already in possession, does not contribute to cost

Product Decision:

- Force Sensing: Honeywell Model 11 Force Sensor
- New Technologies
- Actuation: Digit NEMA 17 Stepper (electromechanical) with ST5-S Stepper Drive
 - Inconsistent Force
- Actuation: THORLABS PAS105 Piezo-Actuator with T-Cube Piezo Controller, and Power Supply
 - Higher Cost

Team Member Responsibilities

- Assigned a Main and Secondary Lead
 - User Manual & UGRADS- Joy, Thaddeus
 - Redesign Mounting System (per client request)- Thaddeus, Joy
 - Order and Acquisition of Products- Matthew, Cody
 - LabView Programming- Cody, Jonathan
 - Manufacturing Prototype- Jonathan, Matthew
- Testing & Redesign
 - Full Team

MSMA Lateral Testing New Project Timeline

								Line 1	10 '14		lan 26.11	и	Eab 2	14	Eab 0	114	E	ab 16.11	4	Eab	22.114		Mar 2	14		Mar 0. "	14	1.0	Mar 16	14	M	ar 22 114	
	%	Task Name	Duration	Chart	Einich	Resource		7 10	. 21	22 25	27	20 21	2	4 . 6	0 10	, 14		CD 10, 1	* 20	22	23, 14	20	2 .	4	c	10	12	· · ·	16 10,	20	22	24 2	e
	Complete 🔻		Duration +	start 🔻	rinish 👻	Names	- D	/ 19	21 4	25 25	21	29 51	2	4 0	0 10	12	14	10 10	20	22	24 20	20	2	4 1	, ,	10	12	14	10 10	20	22	24 2	3 20
1	24%	Finishing Design And Order Parts	6.5 days	Thu 1/23/14	Fri 1/31/14																												
2	50%	Choose Actuator	3 days	Mon 1/27/14	Wed 1/29/14	Full Team						50%																					
3	0%	Order Actuator	1 day	Thu 1/30/14	Thu 1/30/14	Matt,Cody						🌥 0%																					
4	25%	Complete Support Design	3 days	Tue 1/28/14	Thu 1/30/14	Thad, Joy						259	%																				
5	15%	Order and Obtain Materials	6 days	Fri 1/31/14	Fri 2/7/14	Matt,Cody						-			15%																		
6	0%	Assemble Setup	6.5 days	Fri 1/31/14	Sun 2/9/14																												
7	0%	Machine Aluminum	2 days	Tue 2/4/14	Thu 2/6/14	Jon,Matt								0%	5																		
8	0%	Build Setup	2.5 days	Thu 2/6/14	Sun 2/9/14	Jon,Matt								*	0%	6																	
9	0%	Hardware Review 1	0 days	Sun 2/9/14	Sun 2/9/14										at 2,	/9																	
10	0%	Build, Programming, and Testing	31 days	Mon 2/10/14	Mon 3/24/14														_	-					_	-					_		
11	0%	Finishing Build	12 days	Mon 2/10/14	Tue 2/25/14	Thad,Matt													-	-	09	b											
12	0%	Program Labview	30.5 days	Mon 2/10/14	Mon 3/24/14	Cody,Jon													-	-					-	-					-	• 0%	
13	0%	Test and Redesign	18.5 days	Wed 2/26/14	Mon 3/24/14	Full Team															*				-	-	_				-	0%	
14	0%	Hardware Review 2	0 days	Mon 3/24/14	Mon 3/24/14																												4

Conclusion

- Must create a feedback controlled device that laterally loads a MSMA up to 200 N within a small area for under \$2500.
- Continued research for electromechanical and Piezo options, in terms of cost analysis, per client request.
- The final products will be selected on Wednesday (1/29)
- The team delegated tasks, and reconstructed project timeline.

References

- •[1] Leo, Donald J. Engineering Analysis of Smart Material Systems. Hoboken, NJ: John Wiley & Sons, 2007.
- •[2] "The Digit." *http://www.ultramotion.com/products/digit.php*. Ultra Motion. Web. 1 Dec. 2013.
- •[3] Garcia, Matt, Randy Jackson, Jeremy Mountain, Qian Tong, and Hui Yao. *Material Testing Fixture*. *Material Testing Fixture*. Dr. Ciocanel, 2012. Web. 15 Nov. 2013.<http://www.cefns.nau.edu/capstone/projects/ME/2013/DFMTM/index.html>.
- •[4] "Model 11." Model 11. Honeywell International Inc, 2013. Web. 6 Nov. 2013.
- •[5] "Piezo Driver Bandwidth Tutorial." *Replaceable Tip Piezo Actuators*. Thorlabs, n.d. Web. 3 Jan. 2014.

QUESTIONS?