

MSMA LATERAL LOADING DEVICE

PROJECT PROPOSAL

Presented by: Matthew Batten, Cody Burbank, Jonathan McCurdy, Thaddeus Grudniewksi, & Joy Weber December 10, 2013

NORTHERN ARIZONA UNIVERSITY

Overview

- I. Problem Identification
- II. MSMA Background
- **III.** Project Description
- IV. Design Concepts
 - a) Actuation Device
 - b) Force Sensing Device
- V. Concept Selection
 - a) Decision Matrices
- VI. Engineering Analysis
 - a) Towers
 - b) Screw
 - c) Material Selection
- VII. Proposed Design and Cost Analysis
- VIII.Project Planning
 - a. Gantt Charts
- IX. Conclusion

Joy Weber

Problem Identification

- Dr. Ciocanel
 - Associate Professor at Northern Arizona University
 - Conduct research on Smart Materials
 - Wants to expand his testing process to include compressive force in the third dimension
 - Operates at room temperature in a laboratory setting

Solidworks Model of Instron Machine

Magnetic Shape Memory Alloy (MSMA)

- Ni₂MnGa
- Magnetization variant rotation
- Actuating vs. power harvesting

Variant Reorientation Model

Project Description

- Construction of a device capable of laterally loading up to 200 N
- Work within a \$2500 budget
- Fit within 10mmx12mm area under a magnetic field
- Provide feedback control

Experimental Setup for MSMA Testing

Design Concepts

- Space limitations require design to be outside 10mmX12mm area
- Similar setup so focus shifts to
 - Actuation
 - Force Sensing

Basic System Apparatus [2][3]

Electromechanical Actuation

- Motor driven screw
- Pros
 - High precision
 - Available force feedback
- Cons
 - Large in size
 - Large operating range

Electromechanical Actuator Design [4]

Thaddeus Grudniewski

Pneumatic Actuation

- Piston cylinder or hose powered by air
- Pros
 - Fits within allowable space
 - Lower in cost
- Cons
 - Lacks precision
 - Needs compressed air

Pneumatic Actuator Schematic [5]

Hydraulic Actuation

- Computerized piston and hose or cylinder design
- A hose attached to actuators on either side of the specimen
- Pros
 - Flexible, fits in allowed space
 - Incompressible flow;
 finer control
- Cons
 - Less precise than electromechanical
 - Needs more components

Piezoelectric Force Sensor

- Deflection outputs a voltage
 - Due to material properties
- Pros
 - Excellent sensitivity
 - Small size
- Cons
 - Fragile
 - Expensive

Thaddeus Grudniewski

Strain Gauge Force Sensor

- Measures strain through voltage
- Pros
 - Low cost
 - High sensitivity
- Cons
 - Size could be an issue

Basic Strain Gauge Design [8]

Force Sensing Resistor

- Compression changes electrical resistance
- Can be setup to measure a voltage drop
- Pros
 - Inexpensive
 - High durability
- Cons
 - Low sensitivity

Concept Selection and Decision Matrix for Actuation

- Move forward with electromechanical and hydraulic actuators
 - Client requested piezoactuators over hydraulic

	Weight	Piezoelectric	Strain Gage	Force Sensing Resistor
Sensitivity	4	8	7	4
Cost	1	4	7	9
Size	3	9	5	5
Effectiveness in a magnetic field	5	6	7	7
Durability	3	4	6	7
Total	n/a	105	103	96

Concept Selection and Decision Matrix for Force Sensing

• Move forward with Piezoelectric and Strain Gauges

	Weight	Electromechanical	Hydraulic	Pneumatic
Controllability	5	9	7	4
Cost	1	3	5	3
Precision	5	6	7	3
Amount of Applied Force	2	5	8	8
Size	3	4	8	6
Total	n/a	100	115	72

Engineering Analysis

- Force Sensor [1] [5]
 - Similar size
 - Similar mounting position
 - Capable of handling fatigue
- Actuator
 - Similar forces
 - Similar cyclic fatigue
- Mounting
 - Different geometries
 - Towers, Screws

Solidworks Model of Instron Machine [2] [10]

Matthew Batten

Electromechanical Design Setup

Solidworks Model of Electromechanical Mounting Design [2] [10]

Matthew Batten

Piezoelectric Stack Design Setup

Solidworks Model of Piezoactuator Mounting Design [2] [3]

Matthew Batten

Cody Burbank

By-Hand Analysis of Screws

Material Selection

- Base/Towers: 1018 Low-Carbon Steel or 6061 Aluminum Alloy
- Screws: Type 316 Stainless Steel
 - Cheap, common material
 - Yield strength exceeds maximum stress
 - Not present in magnetic field/ non-magnetic
 - Good machinability (base/towers)

Proposed Design

- Electromechanical
 - Ultra Motion Digit NEMA
 17 Stepper
- Strain Gauge
 - Honeywell Model 11 load cell
- Lower costs
- Ease of manufacturing

Solidwork Model of Proposed Design [2][10]

Cost Analysis

Component	Quantity	Cost
Digit NEMA 17 Stepper	1	\$620.00
ST5-S Stepper Drive	1	\$302.00
Model 11 Load Cell	1	\$771.00
Low-Carbon Steel Rod, 1", 3' Length	1	\$26.71
Low-Carbon Steel Bar, 3"-6"-1/4"	1	\$7.67
Flathead Screw, 5 pack	1	\$5.24
Wing Nuts, 25 pack	1	\$7.21
Socket Head Cap Screw, 25 pack	1	\$5.61
Set Screw, 25 pack	1	\$3.76
Total Cost		\$1,749.20

MSMA Lateral Testing Project Timeline

MSMA Lateral Testing New Project Timeline

Jonathan McCurdy

Conclusion

- Must create a feedback controlled device that laterally loads a MSMA up to 200 N within a small area for under \$2500.
- Initial analysis resulted in further development using electromechanical vs.
 Piezo actuators and piezoelectric vs. strain gauge force sensing.
- Engineering analysis was conducted to determine minimum material properties required in the fixtures.
- Final design selected to propose to client after manufacturing and cost consideration.
- Timeline for next semester has been established, and our team will begin ordering products.

•References

- •[1] Leo, Donald J. Engineering Analysis of Smart Material Systems. Hoboken, NJ: John Wiley & Sons, 2007.
- •[2] Garcia, Matt, Randy Jackson, Jeremy Mountain, Qian Tong, and Hui Yao. *Material Testing Fixture*. *Material Testing Fixture*. Dr. Ciocanel, 2012. Web. 15 Nov. 2013.
- <http://www.cefns.nau.edu/capstone/projects/ME/2013/DFMTM/index.html>.
- •[3] "N-216 NEXLINE Linear Actuator." *PIEZO NANO POSITIONING*. Physik Instrumente (PI) GmbH & Co. KG, n.d. Web. 15 Nov. 2013.
- •[4] "Ultra Motion Bug Linear Actuator." *Ultra Motion Bug Linear Actuator*. Ulta Motion, n.d. Web. 27 Oct. 2013. http://www.ultramotion.com/products/bug.php.
- •[5] Reese, Cale, PhD. "The Ins and Outs of Single Axis Actuation." *Design World*. N.p., 1 Aug. 2012. Web. 27 Oct. 2013. http://www.designworldonline.com/the-ins-and-outs-of-single-axis-actuation/.
- •[6] Longhurst, Chris. "Brakes What Do They Do?" *Car Bibles : The Brake Bible*. N.p., 24 July 2013. Web. 27 Oct. 2013. http://www.carbibles.com/brake_bible.html.
- [7] Piezo Systems, Inc. "Piezo Systems: Quick-Mount Piezoelectric Bending Sensors, Piezoelectric Generators, Piezoceramic, PZT, Piezoelectric Transducers, Piezoelectric Actuators and Sensors, Piezoelectric Engineering, Ultrasonics, and Energy Harvesting." *Piezo Systems: Quick-Mount Piezoelectric Bending Sensors, Piezoelectric Generators, Piezoceramic, PZT, Piezoelectric Transducers, Piezoelectric Actuators and Sensors, Piezoelectric Engineering, Ultrasonics, and Energy Harvesting.* N.p., n.d. Web. 28 Oct. 2013. http://www.iezo.com/prodbg7qm.html.
- •[8] "Model 11." Model 11. Honeywell International Inc, 2013. Web. 6 Nov. 2013.
- •[9] Tekscan, Inc. "FlexiForce® Sensors." *FlexiForce Force Sensors.* N.p., n.d. Web. 27 Oct. 2013. http://www.tekscan.com/flexible-force-sensors>.
- •[10] "The Digit." http://www.ultramotion.com/products/digit.php. Ultra Motion. Web. 1 Dec. 2013.

Jonathan McCurdy

QUESTIONS?