

MSMA LATERAL LOADING DEVICE

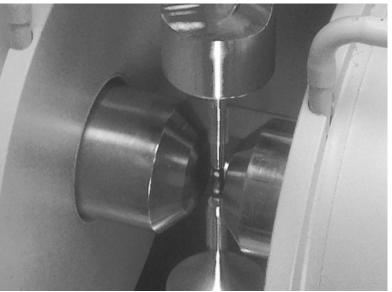
CONCEPT GENERATION AND SELECTION

Presented by:

Matthew Batten, Cody Burbank, Jonathan McCurdy, Thaddeus Grudniewksi, & Joy Weber October 29, 2013

Overview

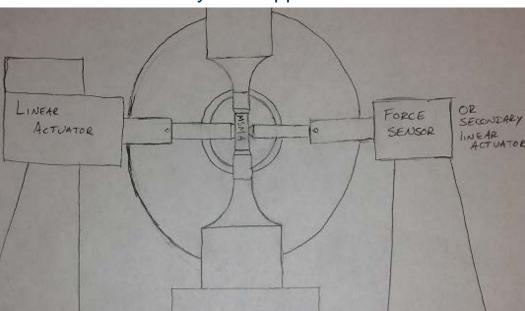
- I. Project Description and Basic System Design
- II. Actuation Designs
 - a. Electromechanical
 - b. Hydraulic
 - c. Pneumatic


III. Force Sensing Designs

- a. Piezoelectric
- b. Strain Gauge
- c. Capacitive
- IV. Concept Selection
 - a. Criteria and Weighting
 - b. Decision Matrices
- V. Project Planning
 - a. Gantt Chart
- VI. Conclusion

Project Description

- Dr. Ciocanel
 - Conducts research on Magnetic Shape Memory Alloy (MSMA)
 - Construction of a device capable of laterally loading under \$2500
 - Fit within 10mmx12mm area under a magnetic field


Experimental Setup for MSMA Testing

Matthew Batten

Basic System Design

- Space limitations require design to be outside 10mmX12mm area
- Similar setup so focus shifts to
 - Actuation
 - Force Sensing

Basic System Apparatus

Matthew Batten

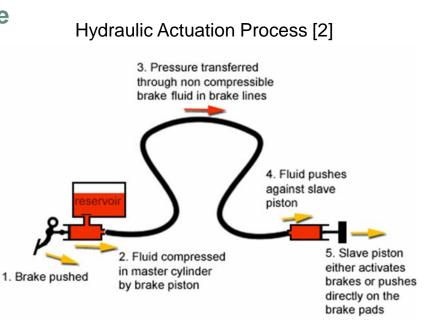
Electromechanical Actuation

- Motor driven screw
- Pros
 - High precision
 - Available force feedback
- Cons
 - Large in size
 - Large operating range

Electromechanical Actuator Design [4]

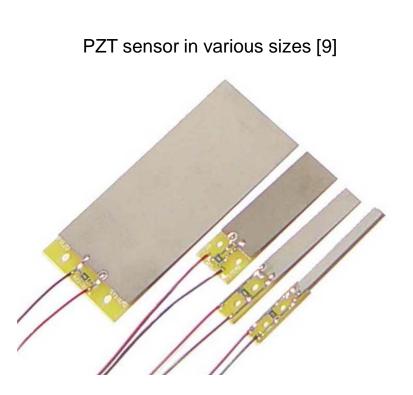
Pneumatic Actuation

- Piston cylinder or hose powered by air
- Pros
 - Fits within allowable space
 - Lower in cost
- Cons
 - Lacks precision



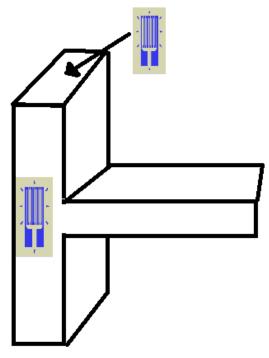
Pneumatic Actuator Schematic [3]

Hydraulic Actuation


- Computerized piston and hose or cylinder design
- A hose attached to actuators on either side of the specimen
- Pros
 - Flexible, fits in allowed space
 - Incompressible flow;
 finer control
- Cons
 - Less precise than electromechanical

Piezoelectric Force Sensor

- Deflection generates an output voltage
- Voltage can be transferred to actuator
- Pros
 - Excellent sensitivity
 - Small size
- Cons
 - Fragile
 - Expensive



Strain Gauge Force Sensor

- Applying strain gauges to a piston style actuator
- Measure strain in the piston and set up a Virtual Instrument (VI)
- Pros
 - Low cost
 - High sensitivity
- Cons
 - Size could be an issue

Basic Strain Gauge Design [5]

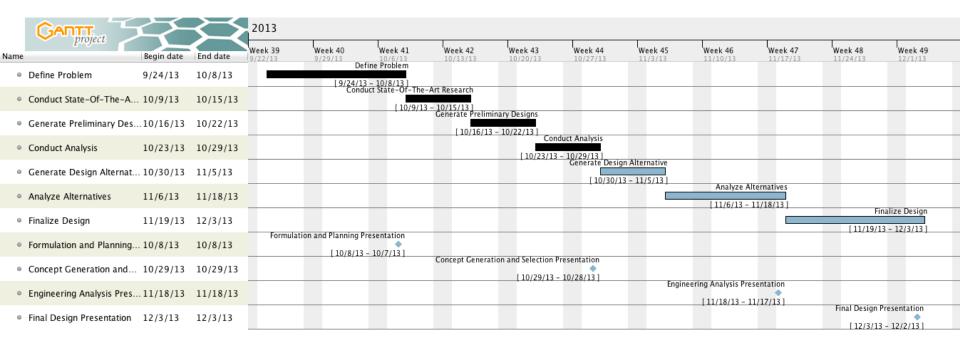
Force Sensing Resistor

- Compression changes electrical resistance
- Can be setup to measure a voltage drop
- Pros
 - Inexpensive
 - High durability
- Cons
 - Low sensitivity
 - Size could be an issue

Basic Force Sensing Resistor [8]

Weighting Criteria and Decision Matrix for Actuation

Criteria	Weight	Electromechanical	Hydraulic	Pneumatic
Controllability	5	9	7	4
Cost	1	3	5	3
Precision	5	6	7	3
Amount of applied force	2	5	8	8
Size	3	4	8	6
Total	n/a	100	115	72



Weighting Criteria and Decision Matrix for Force Sensing

Criteria	Weight	Piezoelectric	Strain Gage	Force Sensing Resistor
Sensitivity	4	8	7	4
Cost	1	4	7	9
Size	3	9	5	5
Effectiveness in a magnetic field	5	6	7	7
Durability	3	4	6	7
Total	n/a	105	103	96

MSMA Lateral Testing Project Timeline

Conclusion

- Create a device that laterally loads within a small area. We developed a basic design and focused on two main areas for design analysis: actuation and force sensing
- Hydraulic actuation was chosen as the most feasible option. Analysis for force sensing will be conducted for piezoelectric and strain gauge designs.
- Next our team will conduct further analysis on the chosen designs and begin the finalization of the proposed project.

NORTHERN ARIZONA UNIVERSITY

•References

•[1] Leo, Donald J. Engineering Analysis of Smart Material Systems. Hoboken, NJ: John Wiley & Sons, 2007.

•[2] Longhurst, Chris. "Brakes - What Do They Do?" *Car Bibles : The Brake Bible*. N.p., 24 July 2013. Web. 27 Oct. 2013. http://www.carbibles.com/brake_bible.html.

•[3] Reese, Cale, PhD. "The Ins and Outs of Single Axis Actuation." *Design World*. N.p., 1 Aug. 2012. Web. 27 Oct. 2013. http://www.designworldonline.com/the-ins-and-outs-of-single-axis-actuation/.

•[4] "Ultra Motion Bug Linear Actuator." *Ultra Motion Bug Linear Actuator*. Ulta Motion, n.d. Web. 27 Oct. 2013. http://www.ultramotion.com/products/bug.php.

•[5] Fassler, Matthias. "Force Sensing Technologies." Study on Mechatronics (2010): Page 1-49.

•[6] Toyota Motor Sales, USA, Inc. Sensors and Actuators.

•[7] Nikonovas, A., A. Harrison, S. Hoult, and D. Sammut. "The Application of Force-sensing Resistor Sensors for Measuring Forces Developed by the Human Hand." *Proceedings of the*

•[8] Tekscan, Inc. "FlexiForce® Sensors." *FlexiForce Force Sensors*. N.p., n.d. Web. 27 Oct. 2013. http://www.tekscan.com/flexible-force-sensors>.

•[9] Piezo Systems, Inc. "Piezo Systems: Quick-Mount Piezoelectric Bending Sensors, Piezoelectric Generators, Piezoeceramic, PZT, Piezoelectric Transducers, Piezoelectric Actuators and Sensors, Piezoelectric Engineering, Ultrasonics, and Energy Harvesting." *Piezo Systems: Quick-Mount Piezoelectric Bending Sensors, Piezoelectric Generators, Piezoeceramic, PZT, Piezoelectric Transducers, Piezoelectric Actuators and Sensors, Piezoelectric Engineering, Ultrasonics, and Energy Harvesting. N.p., N.p., n.d. Web.* 28 Oct. 2013. http://www.iezo.com/prodbg7qm.html.

Thaddeus Grudniewski

QUESTIONS?