# Human Powered Vehicle Project Plan

Matt Gerlich, Alex Hawley, Phillip Kinsley, Heather Kutz, Kevin Montoya, Erik Nelson

October 8, 2013

### Overview

- Project Introduction
- Need Statement
- Project Goal
- Objectives
- Constraints
- Project Plan
  - Gantt Chart
  - QFD
- Conclusion

## **Project Introduction**

- Client
  - Perry Wood
    - Instructor for Mechanical Engineering department at NAU
    - NAU ASME Advisor
  - ASME

Human Powered Vehicle Challenge

## Need Statement

There is no current form of transportation that provides the benefits of bicycle commuting, while offering the practicality of automobiles.

## **Project Goal**

Design a human powered vehicle that can function as an alternative form of transportation.

## Objectives

- Vehicle can reach high speeds
- Light weight
- Highly maneuverable
- Cargo space
- Supports cargo weight

## Objectives

- Large field of view
- Protects rider in case of roll over
- Aerodynamic
- Production run manufacturability
- Fits diverse range of operators

### **ASME Competition Constraints**

Turning radius  $\leq$  26.25 ft (8 m)

Completing 6.21 mi (10km) in under 2.5 hours

Withstand 600 lbf (2670 N) at angle of 12° from

Roll protection vertical with < 2 in (5.1 cm) deflection

systemWithstand 300 lbf (1330 N) side load with < 1.5 in (3.8</th>cm) deflection

Must have a seat belt

Field of view must equal or exceed 180°

Traverse a 5% uphill or 7% downhill

Carry a 12 lbf (5.5 kg) parcel of 15 X 13 X 7.9 in (38 X 33 X 20 cm)

Stop at a speed of 15.5 mph (25 km/h) in a distance  $\leq$  19.7 ft (6 m)

Head lights, tail lights, side view mirrors, reflectors, horn

### Table 2- Costumer Constraints

### **Costumer Constraints**

Capable of exceeding 40 mph (64.4 km/h)

Vehicle weight  $\leq 80$  lbf (36.3 kg)

Coefficient of drag times the area less than that of a traditional cyclist

Development budget of \$6,500.00

### Figure 1- Schedule Overview

| GANTT S                | 5 <del>7</del> 5 | $\rightarrow$ | 2013               |         |                     |         |         |         |         |         |         |         |
|------------------------|------------------|---------------|--------------------|---------|---------------------|---------|---------|---------|---------|---------|---------|---------|
| Project<br>Name        | Begin date       | End date      | Veek 40<br>9/29/13 | Week 41 | Week 42<br>10/13/13 | Veek 43 | Week 44 | Week 45 | Week 46 | Week 47 | Week 48 | Veek 49 |
| 476C Requiements       | 10/8/13          | 12/2/13       |                    |         |                     |         |         |         |         |         |         |         |
| 🗉 🍳 Innovation Design  | 9/27/13          | 11/29/13      | —                  |         |                     |         |         |         |         |         |         |         |
| 🗄 🍳 Frame Design       | 9/27/13          | 11/23/13      |                    |         |                     |         |         |         |         |         |         | -       |
| 🗉 🍳 Ergo Design        | 9/27/13          | 12/4/13       |                    |         |                     |         |         |         |         |         | _       |         |
| 🗄 🍳 Drivetrain Design  | 9/27/13          | 12/4/13       |                    |         |                     |         |         |         |         |         |         |         |
| 🗉 🍳 Fairing Design     | 9/27/13          | 12/3/13       |                    |         |                     |         |         |         |         |         |         |         |
|                        | 9/27/13          | 12/3/13       |                    |         |                     |         |         |         |         |         |         |         |
| 🗄 🍳 Previous vehicle t | 10/2/13          | 10/23/13      |                    |         |                     |         |         |         |         |         |         |         |



### Figure 2- Detailed Project Schedule

| project                       |            |          | Week 40 | l<br>Week 41 | Week 42    | Week 43  | Vveek 44 | Veek 45 | Week 46         | Veek 47  | VVeek 48     | Vveek 49 |
|-------------------------------|------------|----------|---------|--------------|------------|----------|----------|---------|-----------------|----------|--------------|----------|
| Name                          | Begin date | End date | 9/29/13 | 10/6/13      | 10/13/13   | 10/20/13 | 10/27/13 | 11/3/13 | <u>11/10/13</u> | 11/17/13 | 11/24/13     | 12/1/13  |
| • 476C Requiements            | 10/8/13    | 12/2/13  |         | -            |            |          |          |         |                 |          |              |          |
| Innovation Design             | 9/27/13    | 11/29/13 | -       |              |            |          |          |         |                 |          |              | -        |
| Innovation Concept Generation |            | 10/11/13 |         |              | <b>_</b>   |          |          |         |                 |          |              |          |
| Innovation Prototyping        | 10/12/13   | 11/6/13  |         |              |            |          |          | <u></u> |                 |          |              |          |
| Innovation Analysis           | 11/7/13    | 11/29/13 |         |              |            |          |          |         |                 |          |              |          |
| Frame Design                  | 9/27/13    | 11/24/13 | -       |              |            |          |          |         |                 |          |              |          |
| Old Frame Test Date           | 10/10/13   | 10/10/13 |         | 4            | 8          |          |          |         |                 |          |              |          |
| Frame Concept Generation      | 9/27/13    | 10/17/13 |         |              |            |          |          |         |                 |          |              |          |
| Analysis of Chosen Concept    | 10/18/13   | 11/23/13 |         |              |            |          |          |         |                 |          | <u> </u>     |          |
| Specific Geometry Declared    | 11/24/13   | 11/24/13 |         |              |            |          |          |         |                 |          | <b>!</b> • 1 |          |
| 🗉 🍳 Ergo Design               | 9/27/13    | 12/4/13  | -       |              |            |          |          |         |                 |          |              |          |
| Rider Position Study          | 9/27/13    | 10/22/13 |         |              |            | h        |          |         |                 |          |              |          |
| Rider/Pedal Position Declerat | . 10/23/13 | 10/23/13 |         |              |            | -        |          |         |                 |          |              |          |
| Concept Generation            | 9/27/13    | 11/1/13  |         |              |            |          |          |         |                 |          |              |          |
| Analysis of chosen Concept    | 11/2/13    | 12/4/13  |         |              |            |          |          |         |                 |          |              |          |
| Drivetrain Design             | 9/27/13    | 12/4/13  |         |              |            |          |          |         |                 |          |              |          |
| Cost Analysis                 | 9/27/13    | 10/11/13 |         |              | <b>1</b> 1 |          |          |         |                 |          |              | -        |
| Component Declaration         | 10/12/13   | 10/12/13 |         |              | •          |          |          |         |                 |          |              |          |
| Reverse Gear Concept Gener    | . 9/27/13  | 10/27/13 | 4       |              |            |          | h.       |         |                 |          |              |          |
| DriveTrain Analysis           | 10/28/13   | 12/4/13  |         |              |            |          |          |         |                 |          |              |          |
| Fairing Design                | 9/27/13    | 12/3/13  | -       |              |            |          |          |         |                 |          |              |          |
| Concept Generation            | 9/27/13    | 10/27/13 | 1       |              |            |          | h        |         |                 |          |              | 1        |
| Analysis of concepts          | 10/28/13   | 11/13/13 |         |              |            |          | *        |         | h               |          |              |          |
| Proto Printing                | 11/14/13   | 11/16/13 |         |              |            |          |          |         |                 | h        |              |          |
| Windtunnel Test               | 11/17/13   | 11/17/13 |         |              |            |          |          |         |                 | * 1      |              |          |
| Analysis of results           | 11/18/13   | 12/3/13  |         |              |            |          |          |         |                 |          |              |          |
| Retest with final geometry    | 11/25/13   | 11/30/13 |         |              |            |          |          |         |                 | 26       | 4            | 8        |
| Steering/Braking Design       | 9/27/13    | 12/3/13  | -       |              |            |          |          |         |                 |          |              |          |
| Concept Generation            | 9/27/13    | 10/22/13 |         |              |            |          |          |         |                 |          |              |          |
| Analysis of concept           | 10/23/13   | 11/29/13 |         |              |            |          |          |         |                 |          |              |          |
| Clearance Confirmation        | 12/3/13    | 12/3/13  |         |              |            |          |          |         |                 |          |              |          |
| Previous vehicle testing      | 10/2/13    | 10/23/13 |         |              |            | -        |          |         |                 |          |              |          |
| Accelerometer Test Prep       | 10/2/13    | 10/6/13  |         | Ь            |            |          |          |         |                 |          |              |          |
| Accelerometer Test Analysis   | 10/8/13    | 10/23/13 | -       |              |            |          |          |         |                 |          |              |          |
| Acceleronneter rest Analysis  | 10/0/10    | 10/20/10 |         | 4            |            |          |          |         |                 |          |              |          |

#### Table 1- QFD

### **Engineering Requirements**

|          |                         |                     | <u> </u>    |      |               |                              |               |        |           |             | Bench Marks            |                |
|----------|-------------------------|---------------------|-------------|------|---------------|------------------------------|---------------|--------|-----------|-------------|------------------------|----------------|
|          |                         | Yield Strength      | Deformation | Cost | Velocity      | Coefficient of<br>Drag, Cd·A | Volume        | Degree | Distance  | Weight      | The AXE<br>(2012-2013) | Rose<br>Hulman |
|          | Reach high<br>speeds    |                     |             |      | x             |                              |               |        |           |             | x                      | x              |
| ent      | Light weight            |                     |             | X    |               |                              |               |        |           | Х           |                        | x              |
| j me     | Maneuverable            |                     |             |      |               |                              |               |        | X         | X           | X                      |                |
| lire     | Carry cargo             |                     |             |      |               |                              | X             |        |           | Х           | X                      | x              |
| ľ ř      | Large field of<br>view  |                     |             |      |               |                              |               | x      |           |             |                        |                |
| Customer | Protect rider           | x                   | x           |      |               |                              |               |        |           |             |                        | x              |
| ton      | Aerodynamic             |                     |             |      | X             | X                            |               |        |           |             | X                      | x              |
| nst      | Manufacturability       |                     |             | X    |               |                              |               |        |           |             |                        | x              |
| С<br>С   | Range of rider<br>sizes |                     |             |      |               |                              | x             |        |           | x           | x                      |                |
|          | Units                   | psi<br>(kpa)        | in<br>(m)   | \$   | ft/s<br>(m/s) | in^2<br>(m^2)                | in^3<br>(m^3) | o      | ft<br>(m) | lbf<br>(kg) |                        |                |
|          |                         | Engineering Targets |             |      |               |                              |               |        |           |             |                        |                |

## Conclusion

- A human powered vehicle will be designed to provide the practicality of an automobile, while having the benefits of a bicycle.
- Client is Instructor Perry Wood and ASME Human Powered Vehicle Challenge.
- Vehicle will be safe, efficient, and manufacturable on a large scale.

### References

American Society of Mechanical Engineers, *Rules for the 2014 Human Powered Vehicle Challenge* (2014) [Online]. Available: https://community.asme.org/hpvc/m/default.aspx

### Questions?