Human Powered Vehicle Project Proposal

Matt Gerlich, Alex Hawley, Phillip Kinsley, Heather Kutz, Kevin Montoya, Erik Nelson December 11, 2013

Overview

- Project Description
- Project Goal
- Objectives
- Constraints
- Full Assembly
- Subsections
 - Design Concepts
 - Analysis
 - Final Design
- Cost Analysis
- •Spring 2014 Gantt Chart
- Conclusion
- References

Project Description

- •ASME Human Powered Vehicle Challenge
- Clients
 - Perry Wood
 - ASME
- •There is no current form of transportation that provides the benefits of bicycle commuting, while offering the practicality of automobiles.

Project Goal

• "Design a human powered vehicle that can function as an alternative form of transportation."

Table 1- Design Objectives

Objective	Measurement Bias	Units
Vehicle can reach high speeds	Top speed on a flat surface	mph
Light weight	Total weight of vehicle	lbs
Highly maneuverable	Turning radius	ft
Contains cargo space	Volume of storage space	ft ³
Support cargo weight	Load storage space can hold	lbs
Large field of view	Total horizontal plane rider can see	degrees
Protects rider from roll over	Force roll bar can sustain	lbs
Low Coefficient of Drag	Drag force on vehicle	lbs
Production run manufacturability	Unit manufacturing cost for production run of 360	dollars
Fits diverse range of operators	Amount of seat adjustability	ft

ASME Competition Constraints

Turning radius \leq 26.25 ft

Roll bar must withstand 600 lbf top with < 2 in deflection

Roll bar withstand 300 lbf side load with < 1.5 in deflection

Must have a seat belt

Field of view must equal or exceed 180°

Carry a 12 lbf parcel of 15 X 13 X 7.9 in

Stop at a speed of 15.5 mph in a distance \leq 19.7 ft

Table 3- Costumer Constraints

Costumer Constraints
Capable of exceeding 40 mph
Vehicle weight ≤ 80 lbf
Coefficient of drag times the area less than that of a traditional cyclist
Development budget of \$6,500.00

Figure 1- Full Assembly With Fairing

Figure 2- Full Assembly With Model

0

Phillip Kinsley

Figure 3- Full Assembly

	Weight	Ease of Seat Integration	Resistance to Deflection	Fabrication Time	
Score Factor	0.2	0.2	0.4	0.2	Score
Circular	3	1	1	2	1.6
Rectangular	2	3	3	3	2.8
Double Circular	1	2	2	1	1.6

Figure 4- Frame

Matt Gerlich

 Table 5- Stress and Deflection Calculations

Part	Deflection (in)	Part	Stress (psi)
Main Tube Deflection	0.342	Outrigger Stress Nominal	14593
Outrigger Deflection	0.159	Outrigger Stress Max	22473
FEA Deflection	0.159	FEA Stress	16309
Main Tube Lateral Deflection	0.171		
Outrigger Lateral Deflection	0.060		

Matt Gerlich

Figure 8- Side Load Roll Bar Deflection

Figure 9- Rack and Pinion

Figure 10- Pittman Arm

Figure 11- Bell Crank Push Pull

Table 6- Steering Decision Matrix

	Weight	Cost	Ease Of Use	Ease Of Exiting Vehicle	Fabrication Time	Adjustability	Play	
Rack & Pinion	2	2	4	2	9	3	4	Score
Weighted Score	0.36	0.2	0.82	0.37	0.34	0.46	0.55	3.1
Pitman Arm	8	3	3	2	7	3	8	
Weighted Score	1.45	0.3	0.61	0.37	0.27	0.46	1.12	4.56
Bell Crank Push Pull	6	8	7	8	3	6	3	
Weighted Score	1.09	0.8	1.43	1.49	0.11	0.91	0.41	6.25

Figure 12- Caster Angle

Figure 16- Steering Knuckle FEA

Figure 18- Rider Position Angle

Figure 19- Average Power at Various Angles

Figure 20- Ergonomics Assembly

Figure 21- Seat Bracket

Figure 22- Gear Design Concepts

Figure 23- Reverse Gear Concept

 Table 7- Gear Ratios and Speeds

Gear Ratio	Speed at 90 RPM (MPH)	Speed at 110 RPM (MPH)
1.50	10.56	12.91
1.69	11.88	14.52
1.93	13.58	16.60
2.25	15.84	19.36
2.57	18.11	22.13
3.00	21.13	25.82
3.38	23.77	29.05
3.86	27.16	33.20
4.50	31.69	38.73
4.91	34.57	42.25

Kevin Montoya

Speed Area (in²) Width (in) Force (lbf) Length (in) Height (in) Cd (in/s) 18 704 96 37 0.59 681.5 0.038 37 96 20 704 0.51 716.5 0.031 96 22 37 704 0.54 760.0 0.031 96 24 37 704 0.61 803.7 0.033 102 18 37 704 0.41 670.3 0.026 102 20 37 704 0.49 702.1 0.030 102 22 37 704 0.56 753.5 0.032 102 24 37 704 0.028 0.51 790.6 108 18 37 704 0.54 670.5 0.035 108 20 37 704 0.48 701.4 0.030 108 22 37 704 0.43 740.0 0.025 108 24 37 704 0.57 788.4 0.032

 Table 8- Coefficient of Drag Comparison

Figure 28- Vehicle CFD

Fairing

- •Coefficient of drag (C_d) = 0.09
- C_dA = 90.2 in²
- •333.5 Watts to reach 40 mph
- •h = 37 in, w = 24 in, L = 114 in
- •2 x 2 Carbon Fiber 3k

Kevin Montoya

Figure 30- Interior View (Open)

Figure 31- Interior View (Closed)

Figure 33- Exterior View (Closed)

Figure 34- Interior View (Open)

Figure 35- Interior View (Closed)

Figure 36- Fairing with Vents

Figure 37- Top View of Lights

Figure 38- Front View of Lights

Cost Analysis

Table 9- Total Vehicle Costs

Subsection	Projected Total
Frame	\$424.21
Fairing	\$2,926.34
Steering	\$802.36
Drivetrain	\$1,349.04
Ergonomics	\$278.73
Innovation	\$192.10
Vehicle Total	\$5,972.78

Cost Analysis

Table 10 Production Run Costs

Costs	Total
Capital	\$189,800.00
Labor	\$907,200.00
Overhead	\$54,000.00
Materials	\$2,154,600.00
Total	\$3,305,600.00

Figure 39- Spring Semester Project Plan

	GANTT	⋧⊃		2013	2014				
	Name	Begin d.	. End date	mber	January	l February	l March	 April	l May
0	486C Requirments	1/13/14	5/13/14						
0	Competition Dates	3/10/14	4/28/14						-
	California	4/24/14	4/28/14						
	Design Report Due - West	3/24/14	3/24/14					•	
	Florida	4/10/14	4/14/14						
	Design Report Due - East	3/10/14	3/10/14				*		
0	Machining of all Heat Treated components	1/20/14	2/1/14						
0	Machining of all non HT parts	2/2/14	3/6/14						
0	Pre-HT mock build	3/7/14	3/9/14						
0	Heat Treat	3/10/14	3/19/14						
0	Vehicle Assembly	3/20/14	3/23/14		-		i i i i i i i i i i i i i i i i i i i	Դղ	
0	Fairing Construction	12/16/13	3/24/14		N N N N	24 H 24 B		ł	
0	Official Vehicle Testing Date	3/25/14	3/25/14					⊉ 1	
0	Testing and Revisions	3/26/14	4/24/14					Ľ	

Conclusion

- "Design a human powered vehicle that can function as an alternative form of transportation."
- •Client is Instructor Perry Wood and ASME Human Powered Vehicle Challenge.
- •Main objectives for the vehicle include high speeds, low coefficient of drag, and maneuverability.
- •The frame will use 1.5 in x 1.5 in aluminum square center tubing and outriggers to minimize weight and deflections.
- •A bell crank push pull system will be uses for steering.
- •The steering knuckle will be made out of aluminum to reduce weight while maintaining a factor of safety of 2.

Conclusion

- •The rider position will be at an angle of 122 degrees for visibility and efficiency.
- •A quick-release pin and Delrin plastic will be used to adjust the seat with ease.
- •The drivetrain will contain a step up gear configuration with an integrated reverse gear.
- •The drivetrain will minimize the gear ratio while achieving a max speed of over 40 mph.
- •The fairing has a coefficient of drag of 0.09 and $C_dA = 90.2$ in².
- •Vents will be incorporated into the fairing to provide comfort in a variety of climates.

References

[1] R.C. Hibbeler, Structural Analysis, New Jersey, Pearson Prentice Hall, 2012

[2] R. G. Budynas and J. K. Nisbett, *Shigley's Mechanical Engineering Design,* New York, McGraw-Hill, 2011

[3] Philip J. Pritchard and John C. Leylegian, *Introduction to Fluid Mechanics*, Manhattan College: John Wiley & Sons, Inc., 2011.

[4] R.C. Hibbeler, *Engineering Mechanics – Statics*, Pearson Prentice Hall, 2010

[5] Zeke Smith, *Advanced Composite Techniques*, Napa, CA: Aeronaut Press, 2005.

[6] D.G. Wilson, *Bicycling Science*, Cambridge, MA: The MIT Press, 2004

[7] C. R. Kyle, Ph.D. and Frank Berto, "The mechanical efficiency of bicycle derailleur and hub-gear transmissions," Technical Journal of the IHPVA, vol. 52, pp. 3-11, 2001

References

[8] American Society of Mechanical Engineers, Rules for the 2014 Human Powered Vehicle Challenge (2014) [Online]. Available: <u>https://community.asme.org/hpvc/m/default.aspx</u>

[9] R. Horwitz, The Recumbent Trike Design Primer (8.0) (2010) [Online]. Available: <u>http://hellbentcycles.com/trike_projects/Recumbent%20Trike%20Design%20</u> <u>Primer.pdf</u>

[10] Atomic Zombie, Another Canadian Warrior tadpole trike, (2012) [Online] <u>http://atomiczombie.wordpress.com/2012/03/21/another-canadian-warrior-tadpole-trike/</u>

[11] Stanford, The NACA Airfoil Series, (2012) Online] http://www.stanford.edu/~cantwell/AA200 Course Material/The%20NACA%20airfoil%2 Oseries.pdf

[12] WeatherSpark, Average Weather For San Jose, California, USA, (2012) [Online] <u>http://weatherspark.com/averages/31616/San-Jose-California-United-States</u>

Questions?