DOE Wind Turbine: System Integration

UGRADS Presentation

April 25, 2014

BY: CHRIS BOZORTH, CHARLES BURGE, MELISSA HEAD, ASHLEY JEROME, ANNA MANNING, KYLE YATES.

College of Engineering, Forestry & Natural Sciences

Overview

Project Introduction

Problem Formulation

Proposed Design

Prototype Fabrication

Testing and Results

Cost

Conclusion

Introduction

National Collegiate Wind Competition

- •Established by the United States Department of Energy (DOE)
- Competition
 - Business plan
 - Design and test a micro wind turbine

Source: DOE

Clients

Karin Wadsack
 Lead Professional Investigator

David Willy
 Faculty Advisor

Secondary Client

 US Department of Energy

Needs Statement & Project Goal

- •There is limited access to electricity from renewable energy sources after the occurrence of disasters.
- •Develop a small wind turbine used to power small electronics for use in post disaster scenarios.

Objectives

Objective	Measurement Basis	Units
Maximum of 3 people to assemble	Ease of construction	People
Inexpensive	Cost to construct a single turbine	Dollars
Power Output	Power produced	Watts
Lightweight	Overall weight of turbine	Kg
Small Size	Amount of space turbine takes up	m ³
Reliability	How long the turbine will last	Years
Durable Tower	Tower strength	MPa

Constraints for Competition

- •Turbine must produce a minimum of 10 W to power small electronics
- •Rotor must fit within a 45cm x 45cm x 45cm volume
- •Must use DOE provided generator (Great Planes Ammo GPMG 5225)
- •Must be able to withstand fluctuating wind speeds up to 17m/s
- •Rotor must be able to brake within 10% of rated rotor speed

Constraints for Business Model

- Must be able to be used in multiple different terrains for postdisaster scenarios
- •Must be able to yaw into the wind
- •Must be portable for transportation
- •Be able to quickly assemble for emergency power supply
- •Minimum tower height of 10ft

Assembly Design

Selected Tower Design

McMaster Standard-Wall Aluminum Pipe

Material Aluminum

Pipe size (in) 1-1/2

Additional Specifications Threaded on both ends

McMaster Type 304 Stainless Steel Wire Rope

Material	Stainless steel
Size (in)	(1x 7) 1/16
Length (ft)	50
Breaking strength (lb)	500

Source: McMaster

Guy Wire Analysis

- Method of Joints
- Designed off 6m tower
- Horizontal load of 60N

Guy Wire Results

Summary of Forces on Guy Wires		Survivability Wind Speed	
F _{BC}	120 N	Air Density	1.2 kg/m ³
F _{BA}	104 N	Area of Blades	0.16 m ²
F _{AC}	60 N	Area of Tower	0.51 m ²
F _G	104 N	Velocity	61.79 m/s

Tower Bending Analysis

			Displacement (mm
Bending Analysis for M	lax Load		322.505
Top Load from Turbine Weight	60 N		. 295.630
Tower Height	6 m		268.754
Maximum Bending Stress	55 MPa		. 215.003
Maximum Bending Displacement	322.5 mm		. 188.128
Bending Factor of Safety	4.2	•	. 161.253
		_ ↓	. 134.377
			53.751
			_ 26.875
			0.000

Ashley Jerome

Tower Buckling Analysis

Buckling Analysis With Guy Wire Supports for Max Load		
Top Load from Turbine Weight	60 N	
Wind Load	100 N	
Tower Height	6 m	
Maximum Buckling Stress	0.4 MPa	
Buckling Factor of Safety	180	

Tower Fabrication

Piping and coupling thread together

•Guy wire attachment piece milled and corners bent

•Guy wire crimped into place

Ashley Jerome

Selected Base Design

- •Withstands wind forces to keep wind turbine upright
- •Base constructed out of 16 gauge sheet metal
- •Acts as pivot point for tower
- •Shelf to place small electronics while charging

Base Von Mises Stress Analysis

FEA Analysis • Factor of safety: 4 • Force applied at bolt location • Largest stress: 2.18 MPa

Base Fabrication

Processes

Layout for cuts and bends
Floor shear and angle shear for cuts
Bend and Brake for bends
Hydraulic press for holes
Welded individual pieces together

Completed Base Design

- Sheet metal parts cut to specs
- All pieces welded together
- Components coated with galvanizing spray and primer

Selected Yaw System

- •Components:
 - 1. Base plug
 - 2. Aluminum yaw shaft
 - 3. Two deep groove ball bearings
 - 4. Bearing spacers
 - 5. Aluminum yaw sleeve
 - 6. Mainframe yaw plug
 - 7. Slip ring

Selected Slip Ring

•Three electric leads

Maximum current rating of 30 amps

•Maximum voltage rate of 400VDC/VAC

•Diameter of 22 mm

Source: Senring Electronics

Bearing Analysis

 Maximum resultant load of 646 N on bearing A

•Results in a dynamic load (C10) of 12kN

Two single row, deep groove ball bearings

Yawing Mechanism Fabrication

- •Base plug threaded and press fit into top of tower
- •Aluminum shaft turned down and bored with lathe
- Main frame yaw plug press fit into yaw sleeve and bolted to main frame
- •Other components cut with band saw

Final Yaw Assembly

- •Yaw system threaded into tower
- •Main frame bolted to top of sleeve
- •Slip ring wires run through system and to generator
- •System encased by nacelle

Selected Nacelle Design

- Downwind turbine design chosen
- Integrated with faired tower
- Encases main frame
- Protects electrical components from environment
- Rapid prototyped

Flow Analysis (Faired Tower Section)

Nacelle Flow Analysis

•Analyzed for rated wind speed of 12 m/s

Adequately allows wind flow to turbine blades

 Estimated effects from boundary layer on blades

Nacelle Fabrication

- •Rapid prototyped in 3 pieces
- •Nacelle and faired tower section permanently connected with epoxy
- •Nacelle attaches to main frame by fasteners
- •Top half also attaches by fasteners
- Painted blue for aesthetics

Final Nacelle Assembly

 No tail is needed, and faired tower section helps efficiency of blades

•Faired tower section reduces vortices shed from the trailing edge of the tower

Integrated into nacelle

Selected Main Frame

•Main structural member of the turbine

- •Built as two main parts
 - Main frame structure
 - Generator mounting bracket
- 16 gauge steel
 - Galvanized coating
- •Connects components such as:
 - Generator
 - o Gearbox
 - Nacelle
 - Yaw system

Main Frame Analysis

Static Structural Loading Conditions		
Boundary Conditions (1)	Fixed	
Thrust Load (2)	30 N	
Nacelle Weight (3)	20 N	
Electronics Weight (4)	30 N	
Gravitational Effect (5)	9.81 m/s ²	

Main Frame Analysis Cont.

Maximum von-Mises	s Stress
Critical Stress (1)	677 Mpa
Stress at Location of Interest (2)	172 MPa
Factor of Safety at (2)	2.03
Deflection of Main Frame	when Loaded
Maximum Deflection (3)	1.63 mm

Christopher Bozorth

Main Frame Fabrication

- Machined with Tormach CNC
- •Milled out as one piece
- •Bent into final shape
- Corners welded for structural rigidity
- Machined out of 16 gauge sheet metal

Final Main Frame Assembly

Christopher Bozorth

Final Assembly

Testing

System testing consisted of: Cut-In Wind Speed
Cut-Out Wind Speed
Rated RPM
Ability to yaw

Christopher Bozorth

Cut-In Wind Speed/Rated Rotor RPM

Test	With Nacelle	Without Nacelle
Cut-In Wind Speed	14.2 m/s	10.2 m/s
Maximum Rotor Speed (17 m/s)	6500 RPM	6120 RPM

Cut-Out Wind Speed/Ability to Yaw

	Cut-Out Wind Speed (m/s)	Ability to Yaw
With Nacelle	5.2	Yes
Without Nacelle	4.4	Yes

Cut-Out Wind Speed Test

- With Nacelle

Cost Analysis

	Material	Manufacturing
Tower	\$413.00	\$45.00
Base	\$38.50	\$180.00
Main Frame	\$1.50	\$22.50
Yaw System	\$133.00	\$112.50
Nacelle	N/A	\$100.00
Total	\$586.00	\$430.00

Cost of main frame assembly	\$369.00	
Full cost including tower and base	\$1067.00	
Total project cost	\$365.00	

Conclusion

- Integrated systems for the DOE Collegiate Wind Competition
- Successfully developed the following components for a small wind turbine:
 - ₀21 ft. Tower
 - Steel Base
 - Functioning Yawing System
 - Weather Resistant Nacelle
 - OStructurally Sound Main Frame

Conclusion

Testing reveals the nacelle:
Helps with the rated rotor RPM
Cuts in and out at higher wind speeds
Competing in the DOE Collegiate Wind Competition
May 5th- May 7th, 2014
Las Vegas, Nevada

Acknowledgements

•David Willy for being an invaluable advisor

Dr. John Tester for assisting with rapid prototyping

- •A special thanks to Dr. Tom Acker and Karin Wadsack from the Institute of Sustainable Energy Solutions for making this project a possibility
- •ASNAU, CEFNS, and W. L. Franke College of Business for their donations
- •The Department of Energy for hosting this competition

Questions?

References

"The original Skystream Personal wind Turbine." Southwest winds. Last modified Jaunuary 12, 2010. Accessed October 30, 2013.

"V90-3.0 MW." Vestas. Last modified 2013. Accessed October 30, 2013. Vestas.com "A wind turbine recipe book." North American Reader. Accessed October 30, 2013. www.scoraigwind.com

Clean Energy Brands"Clean Energy Brands Tech Support" Acessed October 28, 2013. _http://www.cleanenergybrands.com/shoppingcart/knowledgemanager/questions/157/101+Small+Wind+Turbines

Ham Radio Outlet "US Tower TMM-433SS" Accessed October 27, 2013. <u>http://www.hamradio.com/detail.cfm?pid=H0-002355</u>

Bolt, Steven. ECN, "Offshore wind turbines: integral design to improve reliability." Last modified 12 12, 2010. Accessed October 28, 2013. <u>https://www.ecn.nl/nl/nieuws/newsletter-en/2010/december-2010/start-of-integral-design-wind-turbines/</u>.

TEMBRA, "Main Frame." Accessed October 28, 2013. http://www.tembra.com/index.php/main-frame.html.

LeMieux, David, and Kirk G. Pierce, ed. US Patient Office. US Patient Office, 2007. s.v. "Method and apparatus for wind turbine rotor load control." http://www.google.com/patents/US7160083?printsec=drawing&dq=Wind Turbine Main frame gearbox (accessed October 28, 2013).

Nickelsen, Peter, ed. European Patent Office. European Patent Office, 2007. s.v. "NEW EUROPEAN PATENT SPECIFICATION."

McMaster-Carr. "Pipe, Tubing, Hose and Fittings." Accessed November 19, 2013. www.mcmaster.com

SKF. "Ball Bearing Product Tables" last accessed November 19, 2013.www.secure.skf.com/

Green Energy Star. "Patriot- WZ 12V AC 160W Wind Turbine." Accessed November 12, 2013. www.Greenenergystar.com

Senring Electronics. "SNF022-0330" November 19, 2013 www.senring.com