Second Generation Bicycle Charging Station

Jon Jerome, Michael Klinefelter, Connor Kroneberger, Kori Molever, Robert Rosenberg

October 09, 2013

Overview

- The Client
- Recognizing The Need
- Problem Definition
- Goals
- Objectives
- Constraints
- Quality Function Development
- Project Timeframe

The Client

- Marilla Lamb
 - Member of 1st generation bike charger team
 - B.S. Environmental Engineering
 - Currently in ME graduate program at NAU

The Client

• 2011

Grant proposed to the NAU Green Fund

- 2012
 - Green Fund approves grant

Recognizing The Need

- Demonstrate the importance of renewable energy sources
- Provide students with a way to understand and compare the amount of energy required to power and charge electronic devices with the amount of energy produced by pedaling a bicycle

Problem Definition

- 2.1 Goal
- 2.2 Objectives
- 2.3 Constraints

2.1 - Goals

Goal Statement

 To design a bicycle powered charging station which will provide the ability to charge small electronics while teaching about power generation.

2.2 - Objectives

• Improve usability

- Design bicycle to be comfortable for a variety of users
- Bike should be simple to use and understand for all age ranges

Improve versatility

- AC plug
- Variety of chargers

2.2 - Objectives

Improve portability

• Design for ease of assembly and disassembly

Improve efficiency

- Add a set of gears to maintain higher RPMs and improve user comfort
- Divert power generated effectively between display and output

2.3 - Constraints

- Charging station must be able to be moved easily around campus to be used in various buildings and at different events.
- Power generation information will be displayed both as numerical information and graphically.
- Charging station must be built within the budget of \$1,600 provided by Green Fund.

2.3 - Constraints

- Station must contain an interactive display showing information such as
 - power generated
 - power used
 - total power generated over the lifetime of the charging station
 - total number of users
 - carbon offset

Quality Function Development

		Specifications					
	Weighted Importance	Weight	Power Output	Cost	Required Mantainence	Accuracy	
Adjustable	7	1		1	1	1	
Interactive display	10		3	3		3	
Sufficient AC Power	10	1	3	2		2	
Collapsible	4			2	2		
Geared	8	2		2	3		
Geomerty	3	3		3			
Multiple Chargers	8		2	1			
AC plug for Laptop Charging	10		3	1			
Shows Power Generated	10		1			2	
Shows Power Used	10		1			2	
Shows Total Power Generated	9		1			2	
Shows Total Number of Users	9		1			2	
Carbon Offset	8		3			2	
	Score	42	168	108	39	149	
	Relative Weight	0.25	1.00	0.64	0.23	0.89	
	Unit of Measure	lbs	Watt	\$	Hours	*	

Objectives

Rob Rosenberg

Project Timeframe

Deliverables:

- Project Needs, Specifications, and Planning
- Concept Generation and Selection
- Engineering Analysis
- Final Project Proposal

Summary

- Recognize the need to educate about power generation
- Defined our goal statement to educate and provide a bicycle generator that will produce higher wattage
- Incorporated constraints though Improving Usability, Versatility, Portability & Efficiency
- Based on QFD, Power Output is our teams most important specification
- Final project proposal to be submitted by first week of December 2013.

References

- "Bicycle Generator Project." Bicycle Generator Project. N.p., n.d. Web. 05 Oct. 2013. http://nau.edu/CEFNS/Centers-Institutes/Sustainable-Energy-Solutions/Education/Bicycle-Generator-Project/.
- Lamb, M., First Generation Bicycle Generator Design & Build Team. Personal Communication. 2013
- Lamb, M., The NAU Green Fund Addendum Application for Second Generation Charging Station. Feb. 2013.

Questions?