Second Generation Bicycle Charging Station Engineering Analysis

Jon Jerome, Michael Klinefelter, Connor Kroneberger, Kori Molever, Robert Rosenberg

November 20,2013

Overview

- Design Assumptions
- Gearing
 - Load Analysis rpm
- Structural Analysis
 - Frame
 - Stand
- Project Update
- Conclusion

Design Assumptions

- Crank length has negligible effect on maximum power production
- Neglect load on bearings
- Axles and front fork are sufficiently strong

Gearing

Single Speed Bicycle

- Simple design
- Low cost
- Discomfort at
 - high speeds

Gearing

- Geared Bicycle
 - More expensive
 - Maintain high RPM comfortably

Michael Klinefelter

RPM Analysis

	User Input (RPM) [Average]	Front Gear (teeth)	Rear Gears (teeth)	Rear Tire Diameter (in.)	Generator Track Diameter (in.)	Expected Range (RPM) [Average]
Single Speed	40-132 [71]	42	17	26.6	3	876-2891 [1555]
3-Gear	40-132 [68]	42	16-32	26.6	3	1536-3072 [1653]

Single Speed Frame Analysis

Single Speed Frame Analysis

Von Mises Stresses

Factor of Safety

Geared Frame Analysis

Geared Frame Dropouts

Factor of Safety FOS 1.00e+003 9.20e+002 8.40e+002 7.60e+002 6.80e+002 6.00e+002 5.20e+002 4.40e+002 3.60e+002 2.80e+002 2.00e+002 1.20e+002 4.00e+001

Stand Analysis

Von Mises Stresses

Factor of Safety

Connor Kroneberger

Project Updates

Kori Molever

Conclusion

- Geared Frame found to be structurally superior to single-speed frame.
- FEA analysis of stand with 1200 N distributed load has minimum FOS value of 5.
- Geared configuration nominal output to generator is ~1653 rpm

References

[1] Budynas, R.G., Nisbett, J.K., "Shigley's Mechanical Engineering Design" 9th Edition. McGraw Hill, New York, NY. 2011

[2] Whitt, F.R., Wilson, D.G., "Bicycling Science" 2nd edition. MIT Press, Cambridge, MA. 1982

Questions?