Second Generation Bicycle Charging Station Concept Generation

Jon Jerome, Michael Klinefelter, Connor Kroneberger, Kori Molever, Robert Rosenberg

October 30th, 2013

Overview

- Project Background
- Concept Generation
- Concept Selection
- Project Timeline Progress
- Conclusion

The Project

Goal Statement

-Provide students with a way to understand and compare the amount of energy required to power and charge electronic devices with the amount of energy produced by pedaling a bicycle

The Project

- First bicycle charging station built in 2012
- Second generation station must provide
 - -Greater educational value
 - -Interactive display
 - -Comfort for variety of users
 - -Increased portability

Concept Generation

- Gearing
- User Adjustability
- Power Storage
- Portability

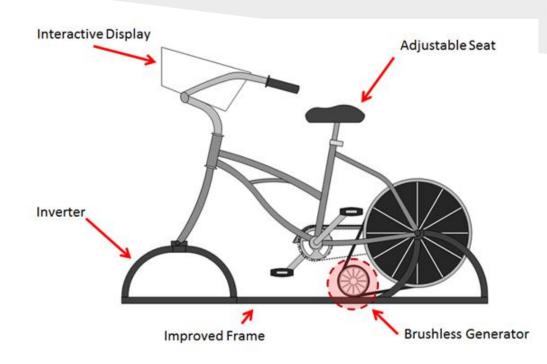
Gearing

Single Speed

- -Cost effective
- -Less complicated

Geared Bike

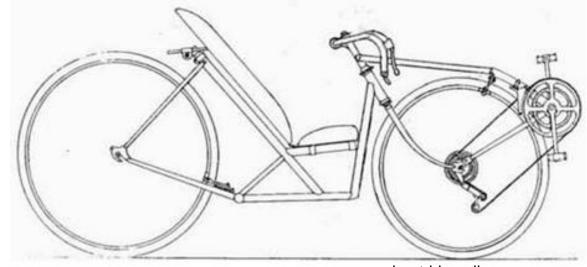
- -Allows for higher RPMs
- -More expensive



http://www.meijer.com

User Adjustability

Upright configuration


- -Readily Available
- -Seat Adjustability to 12 inches
- -Lower cost

Adjustability

Recumbent Frame

- -Ergonomic advantage
- -Higher cost
- -Increased size

bentrideronline.com

Power Storage

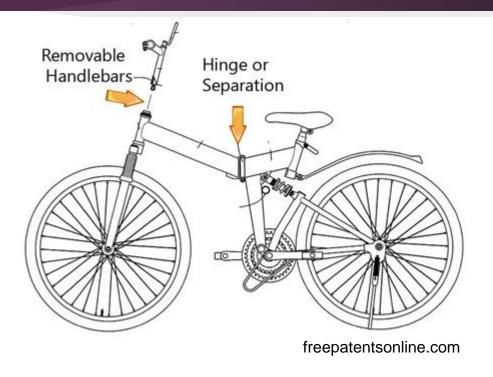
Battery

- -Must be initially charged before supplying power
- -Charge depletes over time

Capacitor

- -Conducive to immediate charging
- -Rapid discharge

wholesalebatteriesdirect.com


mccreavy.com

Jonathan Jerome

Portability

Collapsible Frame

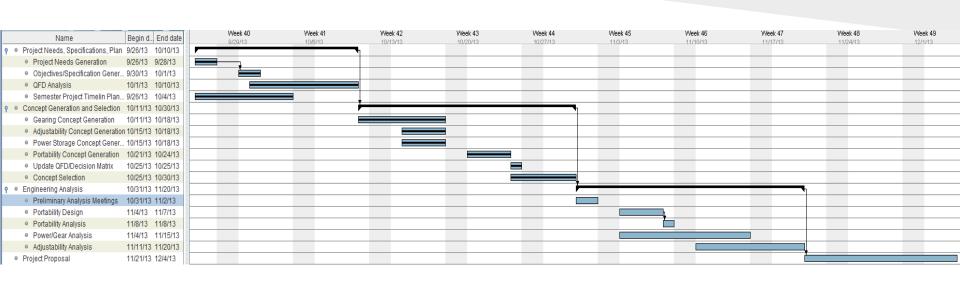
- -Frame separation
- -Carrying case for each piece

Connor Kroneberger

Portability

Rear wheel stand

- -Rotates to top of rear wheel for ease of travel
- -Fewer components
- -Bicycle can be ridden to new location


Relative Weight

Design Option	Assembly Time (sec)	Weight (lb)	Range of Adjustability (inches)	Cost (\$)	RPM	Maintenance (hours)	Total
Assembly Time (sec)	_	0	0	1	0	0	1
Weight (lb)	1	_	0	1	0	1	3
Range of Adjustability (inches)	1	1	-	1	0	1	4
Cost (\$)	0	0	0	-	0	1	1
RPM	1	1	1	1	_	1	5
Maintenance (hours)	1	0	0	0	0	-	1

Decision Matrix

Scale: 1-unfavorable 5-favorable	Assembly time (sec)	Weight (lb)	Range of Adjustability (inches)	Cost (\$)	RPM	Maintenance (hours)	Total
Collapsible	5	2	1	1	1	2	23
Rear Wheel Stand	5	2	1	3	1	2	25
Upright Frame	5	1	5	4	3	1	48
Recumbent Frame	2	2	5	2	1	2	37
Geared	1	1	3	4	5	3	48
Single Speed	1	1	2	1	5	1	39
Battery	1	1	1	4	1	1	18
Capacitor	1	4	1	4	1	1	27
Relative Weight	1	3	4	1	5	1	

Project Timeframe

Conclusion

- Discussion of project and design concepts
- Concept selection
 - -Upright Frame
 - -Geared
 - -Rear wheel stand
 - -Capacitor
- Progress with respect to projected timeline

References

- Lamb, M., First Generation Bicycle Generator Design & Build Team.
 Personal Communication. 2013
- http://www.emmeshop.it/product.php?id_product=490
- http://www.bikecad.ca/1330527728537
- http://www.bentrideronline.com/messageboard/showthread.php?t=57760& page=6
- http://www.freepatentsonline.com/6966570.html
- http://www.batterymart.com/p-12v-20ah-sealed-lead-acid-battery-2.html
- http://www.meijer.com/s/shimano-9-speed-bike-gear-cassette/_/R-124241
- http://mccreavy.com/1837/how-does-a-capacitor-work

Questions?