The Wright Stuff

UGRADS Technical Presentation April 26, 2013 Aaron Lostutter Adam Nelessen Brandon Perez Zev Vallance Jacob Vincent

NORTHERN ARIZONA UNIVERSITY

Agenda

- Competition Overview
- Team Process
- Budget
- Configuration Selection
- Preliminary Analysis
- Performance Analysis
- Flight Testing
- Competition Objectives & Results
- Lessons Learned

Competition Overview

- Customer
 - Society of Automotive Engineers (SAE)
- Project
 - Aero Design West Competition
 - Self-motivated, self-funded project
 - Test of individual and group capabilities

Problem Statement

Needs Identification

 Current remote controlled aircraft do not carry sufficient payload

• Goals

- Introduce precision manufacturing techniques into RC aircraft design
- Maximize the payload capacity of an aircraft within the requirements laid out by SAE

Design Constraints

- Mission Objectives
 - Technical Presentation
 - Flight Demonstration
- Design Limitations

Design Limitations

R1	Aircraft must lift from the ground within a take-off distance of 200 feet
R2	Aircraft must successfully complete one 360 degree circuit of the field
R3	Aircraft must touch down and land within 400 feet
R4	Aircraft must remain intact during takeoff and landing
R5	Aircraft shall not exceed a combined length, width and height of 225 inches
R6	Aircraft may not weigh more than 65 pounds with payload and fuel
R7	Aircraft components may not consist of any fiber-reinforced plastic or lead
R8	Either an O.S. 61FX or a Magnum XLS-61A engine must be used

Team Process

- Design Philosophy
 - Sound conceptual design
 - Thorough engineering analysis
 - Precision manufacturing techniques

Team Process

Team Process

Task Name	Start	Finish	21 August 11 October 1 November 21 January 11 March 1 April 21 7/8 7/29 8/19 9/9 9/30 10/21 11/11 12/2 12/23 1/13 2/3 2/24 3/17 4/7 4/28 5/1
Senior Design	Wed 8/1/12	Sat 5/4/13	
Conceptual Design Phase	Mon 9/24/12	Fri 10/19/12	
Register for Competition	Tue 10/2/12	Tue 10/2/12	♦ 10/2
Preliminary Design	Fri 10/19/12	Thu 1/10/13	· · · · · · · · · · · · · · · · · · ·
Meet Fundraising Goal	Mon 10/29/12	Mon 10/29/12	♦ 10/29
Preliminary Design Review	Sun 11/11/12	Sun 11/11/12	♦ 11/11
Construction	Fri 1/11/13	Fri 3/1/13	
Critical Design Review	Fri 3/1/13	Fri 3/1/13	
Flight Test	Sat 3/2/13	Sat 3/2/13	♦ 3/2
SAE Report Due	Mon 3/4/13	Mon 3/4/13	♦ 3/4
Flight Test 2	Sat 3/30/13	Sat 3/30/13	
SAE Aero Competition	Thu 4/11/13	Mon 4/15/13	

Budget & Expenses

Building Budget	\$1,835
Travel Budget	\$2,250
Competition Budget	\$870
Total Budget	\$5,000
Expenses	\$5,000 \$4901

Configuration Selection

Configuration Selection

- Tail
 - Conventional
 - Minimize weight without sacrificing stability

T-Tail

- Propulsion Installation
 - Front mounted
 - Induces desired center of gravity
 - "Clean" air intake

- Landing Gear
 - Tail Dragger
 - High propeller clearance
 - Induces natural angle of attack
 - Minimizes weight

Preliminary Analysis

- Based on legacy documentation [3]
 - Airfoils: E423 and S1223
 - Traveling velocity = 30 ft/s
 - Re = 200,000
 - Elevation = 800 ft
 - Air density = 0.0023 slug/ft^3
 - Total plane weight = 35 lb

Preliminary Analysis

- XFOIL [4] Comparison between Selig 1223 and Eppler 423
- L/D ratio up to 15% higher for S1223
- Optimal L/D ratio at approximately 5°
- c_L ranges between 1.2 and 1.5

Vehicle Sizing

- Wing Sizing (Airplane Width)
 - Input assumed values for ${\rm c_L},\,\rho,$ and V into below equations [5]

 $L' = c_L \times \frac{1}{2} \times \rho \times V^2 \times chord$ $L = L' \times wingspan$

- Iterate chord and wingspan values until desired result is met
 - Lift matches target airplane weight (35 lb)
 - Aspect ratio is acceptable (7.5)

Vehicle Sizing

• Fuselage Sizing (Airplane Length)

- Mimic the profile of a NACA 0012 [6]

Vehicle Sizing

- Landing Gear Sizing (Airplane Height)
- Results
 - Width = 90 in
 - Length = 56 in
 - Height = 17 in
 - Total = 90 + 56 + 17 = 163 inches < 225 inches</p>

Propulsion

- Magnum XLS-61A engine selected per SAE requirements
- Propeller manufacturer guidelines for choosing diameter range [6]

Propulsion

- Static thrust testing
- 14X4 provided the most static thrust
 - Seemed to stress the engine a bit
- When in motion, the thrust will decrease
- 14X4 propeller will be used

Propeller	RPM	Thrust (lb)
11X7	11,400	5.51
12X7	10,000	5.22
13X4	10,500	7.28
14X4	9,300	8.16

Performance Analysis

Drag Estimation

Performance Analysis

• Takeoff Performance

- Iterative MATLAB code solves for airplane weight for a sweep of air density values
- After subtracting the empty airplane weight, the payload weight is found

VERTICAL

YAW

CG

LATERAL

AXIS

PITCH

Stability

- Pitch
 - V_H of 0.3-0.6 is needed [8]
 - Our V_H = 0.55
- Roll
 - Dihedral angle of 3° provides spiral stability
 MORE LIFT

LONGITUDINAL AXIS

ROLL

- Control Surfaces
 - Based on ratios between wing/stabilizers and respective control surface
 - Planform Area (S)
 - Total Span (b)
 - Chord Width (C)

• Aileron

	Typical [9]	Actual
$S_{a/S}$	0.05-0.1	0.11
$b_{a/b}$	0.2-0.3	0.38
C_a/C	0.15-0.25	0.29
δ_{Amax}	±30°	±25°

• Elevator

	Typical [9]	Actual
S_E/S_h	0.15-0.4	0.26
b_{E}/b_{h}	0.8-1	1
$C_{E/C_{h}}$	0.2-0.4	0.39
δ_{Emax}	±20°	$\pm 20^{\circ}$

• Rudder

	Typical* [9]	Actual
$S_R/_{S_V}$	0.19-0.24	0.28
C_R/C_V	0.225	.37
δ_{Rmax}	±30°	±20°

*Empirically derived

- Servo Sizing
 - Torque Equation

 $T(oz - in) = 8.56x 10^{-6} \left(\frac{C^2 V^2 Lsin(S_1)}{tan(S_2)}\right) [10]$ C = Control Surface Chord V = Max Velocity L = Control Surface Length S₁ = Maximum Control Surface Deflection S₂ = Max Servo Deflection

	Calculated (oz-in)	Actual (oz-in)
Aileron	31.4	42.0
Elevator	28.7	42.0
Rudder	47.27	72.0

Weight Buildup

- Initial weight estimate = 10 lb
- Final airplane weight = 10 lb
- Use of commercial-grade Al honeycomb as fuselage centerpiece
- Cut holes in stabilizers, bulkheads, and ribs to reduce weight
- Center of Gravity was placed at 22% of the wing chord
 - Slightly forward from standard 25% approximation
 - Highly-cambered airfoil [11]

Materials

- Acrylonitrile Butadiene Styrene (ABS)
 - Used for ribs, cowling, and ailerons
 - 3D printed for precise manufacturing and customization
- Aluminum Honeycomb
 - Connection point
 between fuselage, wings,
 landing gear, and payload
 - High strength-to-weight ratio

Stress Analysis

• Spars

•

-Treated as cantilevered beam with distributed load

Landing Gear – Utilized COSMOS FEA software

Flight Testing

- Initial
 - Location
 - Flagstaff, AZ
 - Elevation
 - 7,000 ft
 - Inspired several design changes:
 - Larger horizontal stabilizer
 - Reduced angle of attack
 - Added dihedral angle
 - Propeller size increased

Flight Testing

- Final
 - Location
 - Leupp, AZ
 - Elevation
 - 4,400 ft
 - Multiple test flights with varying weights
 - Empty to 10.5 lbs

Competition Objectives

- Mission Strategy
 - Empty weight flight
 - 10 points
 - Flight with a load very near to prediction
 - FS + PPB = 74.0336
 - Empty flights for remainder to maximize
 Ao → i
 - i = 1.15

Competition

- Flight Results
 - Flight 1: Empty
 - Flight 2: 13.8lb
 - Flight 3: Empty
 - Flight 4: 6.9lb
 - Flight 5: 13.8lb
 - Flight 6: 6.9lb

Competition

- 1st place Technical Presentation
- 14th Overall Score

Lessons Learned

- Start design & build processes early
- Research fundamentals of aircraft design
 - Center of gravity location and aircraft stability
- Emphasize testing over conceptual perfection
- Problem Identification
 - Thorough understanding of aircraft components
 - Effective communication between pilot and crew
- Take advantage of allotted dimensions

Acknowledgements

- Pilot
 - Chuck Hebestreit

- Academic Advisors
 - Dr. John Tester
 - Dr. Tom Acker

And our sponsors...

Creative Technologies Worldwide

References

[1] "2013 SAE Aero Design Rules." http://students.sae.org/competitions/aerodesign/rules/rules.pdf.
[2] Raymer, Daniel P. *Aircraft Design: A Conceptual Approach*. 3rd ed. Reston, VA: American Institute of

- Aeronautics and Astronautics, 1999. Print.
- [3] Bruno, Nick; Cluff, Kevin; Dugdale, Joel; Varga, Sean. "SAE Aero Design 2009." Flagstaff, AZ: Northern Arizona University, 2009.
- [4] Drela, Mark. "XFOIL 6.97." *XFOIL Subsonic Airfoil Development System*. Ed. Harold Youngren. N.p., Apr. 2008. Web. 04 Mar. 2013.
- [5] Anderson, John. Introduction to Flight. 2nd ed. New York: McGraw-Hill, 1985. Print.
- [6] Carpenter, P. http://www.rc-airplane-world.com/propeller-size.html. N.p.. Web. 10 Apr. 2013.
- [7] Nicolai, Leland. Estimating R/C Model Aerodynamics and Performance. Tech. N.p.: n.p., 2009. Print.
- [8] "Basic Aircraft Design Rules." http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-01-unifiedengineering-i-ii-iii-iv-fall-2005-spring-2006/systems-labs-06/spl8.pdf. N.p., 6 Apr. 2006. Web. Feb. 2013.
- [9] Sadraey, Mohammad. Aircraft Design: A Systems Engineering Approach. West Sussex: Jon Wiley and Sons, 2012. Print.
- [10] Gadd, Chuck. "Servo Torque Calculator." Calculate Required Servo Torque. N.p., n.d. Web. 04 Mar. 2013.
- [11] Anderson, John. Fundamentals of Aerodynamics. 5th ed. New York: McGraw-Hill, 2011. Print.

Questions?

"The exhilaration of flying is too keen, the pleasure too great, for it to be neglected as a sport" -Orville Wright

Performance Analysis

• Takeoff Performance

$$s_{LO} = \frac{1.44W^2}{g\rho_{\infty}SC_{L_{max}}\{T - [D + \mu_r(W - L)]_{ave}\}}$$
[5]

$$W = \sqrt{\frac{s_{LO}g\rho_{\infty}SC_{L_{max}}\{T - [D + \mu_r(W - L)]_{ave}\}}{1.44}}$$

 $S_{LO} \equiv Takeoff Distance$ $W \equiv Airplane Weight$ $g \equiv$ Acceleration due to Gravity $\rho_{\infty} \equiv Air Density$ $S \equiv Wing Planform Area$ $C_{L_{max}} \equiv Maximum Lift Coefficient$ $T \equiv Static Thrust$ $D \equiv Total Drag$ $\mu_r \equiv Rolling Friction Coefficient$ $L \equiv Total Lift$

- Iterative MATLAB code solves for airplane weight for a sweep of air density values
- After subtracting the empty airplane weight, the payload weight is found

Stability

Longitudinal

$$V_H = \frac{S_H l_H}{Sc} [8]$$

V_H of 0.3-0.6 is needed [8]

 $V_H \equiv Tail Volume Ratio$

- $S_H \equiv$ Horizontal Stabilizer Planform
 - $l_H \equiv$ Horizontal Stabilizer Moment Arm

 $S \equiv Wing Planform$

 $C \equiv Wing Chord$

• Spiral

- Our V_H = 0.55

- Dihedral angle of 3° provides spiral stability