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Agenda

e Static Analysis

* Aerodynamic Systems

* Propulsion Systems

e Structural & Material Considerations
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Aerodynamic Systems

e 220k > Reynolds Number > 110k

— Laminar Flow

* Pressure drag more significant than skin friction
— Airfoil Selection

* Induced drag
— Aspect ratio and planform taper



Airfoil Selection

* As thin as possible with minimal camber
— Reduce flow separation and pressure drag

e Airfoils under consideration
— NACA 2408, E174, NACA 2412
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Trailing edge
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Vortex Panel Method

 Method: Discretize an arbitrary body into panels &
model each panel as a vortex contribution
* Inputs:

— Airfoil shape, chord length, angle of attack, environmental
conditions
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Vortex Panel Method ... couens
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* QOutputs:
— Lift coefficients per unit
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— Pressure coefficients per
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Lift Induced Drag
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* Aspect Ratio Vs. Taper Ratio
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Propulsion Systems

Magnum XLS-61A

Displacement | 9.94cc
(0.607ci)
Bore 24mm
Stroke 22mm
Practical RPM | 10,000 -

14,000 rpm
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Propeller Selection

* Propellerrangeof 11 X7 =213 X6
e 11 X 7 is the best for breaking in the motor

* Physical testing needs to be performed to
determine best match
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Wing Layout

* Airfoil geometry defines rib layout

Trailing edge

Leading edge
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Material Selection

e Utilize rapid prototyping for ribs
* Acrylonitrile Butadiene Styrene (ABS)

. Polymerization of Acrylonitrile, Butadiene,
Styrene monomers.
. High impact and mechanical strength

Specific Tensile Tensile Flexural Flexural
Gravity Strength Modulus Strength Modulus
(Mpa) (Mpa) (Mpa) (Mpa)

ABS P400 1.04 22 1,627 41 1,834




Discretized Wing Element

Determine shear forces and torques across the wing

Divide wing into sub elements

— Sections represent distance between individual ribs
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Determine distance to fuselage and CG of each area
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Mechanics of Materials Analysis

* Chord Length, L,

x*(Lo—Lp)
D

— L1:Ln+

* Section Area, A,

B
— Ay =;(L1+L0)

. Trapezoidal CG
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Mechanics of Materials Analysis

e Shear Force = Pressure * Area

 Bending Moment = Shear Force * Moment Arm
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Stress Analysis

* Forces and moments at each rib location related to
necessary supporting beam geometry

Trailing edge
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Project Timeline

Task Name Aug '12 |5g:'12 |Oct'12 |Nq:w'12 |Dec'12 |Jan'13 |Feb'13 | Mar '13 |Apr'13 | May "13 |
Organizational Tasks e

Register for the Competition L 2

Gather Funding —

Acquire Core Materials _]i——

Acquire Remaining Materials —

Submit Report L 2

Design Tasks

i
Conceptual Design _1
E

Preliminary Design

10

11

12

13

14

15

16

17

18

Build Design

Test Design

Rebuild and Retest Design

Compete in SAE Event
Course Presentations

Needs |dentification

Concept Generation and

Selection

Engineering Analysis

Final Design Review and Project
Proposal
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Summary

e Static Analysis

* Aerodynamic Systems

* Propulsion Systems

* Structural & Material Considerations
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Questions?
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Backup Slides: MATLAB Codes

2990000
5 5

570000

o @

%Calculate Reynolds Number$%%s
Input Env1ronmental Variables
speed ftps=15:.1:30;

$Predicted speeds from previous team's report
speed mps=speed ftps.*.3048;

chord=.35;

$[m] Assumes roughly 1/3 of a meter at root with
a taper

T=283.15;

% from wunderground avg on 4/14

c
c

o)

% [K]
p=98532.6;

$[Pa] from wunderground avg on 4/14
R=287.04;

$[J/kg*K] Air

rho=p/ (R*T) ;

mu=1.71E-5* (T/273)70.7;
$[N*s/m”2] From Power Law eqn.,
826, Fluid Mechanics by White

Table A.2, pg.

e

%% Compute Secondary Variables
Re=(rho.*speed mps.*chord) ./mu;
$Theoretical Range

o
o
oe
o
oe
o
oe
oe
o° oP

$Input Plane Dimensions$

o
5% ¢

max total _dim=(225/12)*.3048; [m]
w=6*.3048; % [m]
1=5%.3048; % [m]
h=2.75*.3048; % [m]
total dim=w+l+h; % [m]
$%%%%%Calculate Payload Potential%%$%%%%%%%%%

Wo=65*4.45; 5[N]
Wpayload=25*4.45; % [N]
Wfuel=.25%4.45; % [N]
Based on 120g for 4oz fuel

Wengine=22.5%; 5 [oz]
Wengine=Wengine*.28; 5[N]

Wempty=Wo-Wpayload-Wfuel-Wengine;

00000000
60000000

°

W= 65*4 45;
Fyl=(5/6)*
X1=.5*.3048;
Fy2=W/6;
x2=x1*Fyl/Fy2;
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%% Assumptions

Vinf=4.5:9; sm/s

1=289.13; N

Wingspan=1.83; %m

Chordr=.35; %chord at root (m)
Chordt=.1; %chord at tip (m)

S=0.5*Wingspan* (Chordr-Chordt) +Chordt*Wingspan;

$Planform area triangle 6 ft wingspan and 1 ft chord

%% drag and 1lift Coefficients
TaperRatio=Chordt/Chordr;

AR=Wingspan”2/S;

de=.16;

$Assuming AR is about 10 (maxed) with
taper ratio of 0 from figure 5.20
e=(1l+de) " (-1);

ginf=0.5*rho*Vinf."2

CL=L./ (ginf*S)
Cd=CL."2/ (pi*e*AR)

%% Prandtl scale
CL1=L./ (max (ginf) *S) ;
AR1=Wingspan”"2/S;
AR2=4:10;

Cd1=CL."2/ (pi*e*ARl) ;
Cd2=CL1"2./ (pi*e*AR2) ;

CD=Cd2+CL1.72./ (pi*e) * ((1/AR1l)~-(1./AR2));

%% Optimization

ARop=4:2:10;

Tratio=0:.1:1;
ded4=1.9436*Tratio.”6-7.3838*Tratio.”5+11.402*Tratio.4~
9.1872*Tratio.”3+4.1177*Tratio.”2-0.9323*Tratio+0.08;
de6=2.402*Tratio.”6-9.802*Tratio.”5+15.844*Tratio.4~
12.989*Tratio.”3+5.8218*Tratio.”2-1.3172*Tratio+0.125;
de8=4.2892*Tratio.”6-15.352*Tratio.”5+21.865*Tratio. 4~
15.87*Tratio.”3+6.2977*Tratio.”2-1.2806*Tratio+0.1098;
del0=3.0392*Tratio.”6-10.945*Tratio.”"5+16.38*Tratio. 4~
13.177*Tratio.”3+6.1703*Tratio.”2-1.5226*Tratio+0.1601;

Cdiop=zeros (length (ARop), length (Tratio));
for i=1:length (ARop)
for j=1l:length(Tratio)

if i==1
Cdiop(i,j)=(CL1"2/ (pi*ARop (i)))* (1+ded (3));
end
if i==2
Cdiop(i,j)=(CL1"2/ (pi*ARop (i)))* (1+de6 (7)) ;
end
if i==3
Cdiop(i,j)=(CL1"2/ (pi*ARop (i)))* (1+de8 (7)) ;
end
if i==
Cdiop (i, J)=(CL1"2/ (pi*ARop(i)))* (1+del0 (J));
end

end
end

surf (Tratio, ARop, Cdiop)

title('Lift Induced Drag Optimization', 'FontSize',18)
ylabel ('Aspect Ratio', 'FontSize',18)

xlabel ('Taper Ratio', 'FontSize',18)

zlabel ('Lift Induced Drag', 'FontSize',18)

rotate3d
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% Request dimension and loading input
L=input ('What is the length of the Wing?');
Wl=input ('What is the value of W1?"');
W2=input ('What is the value of W2?");

% Use statics to determine the overall forces
from the distributed load.

F1=W1*L;
F2=(W2-W1)*L/2;

% Sum moments about point A, or the point where
the spar is connected to

Q

% the fuselage.

MA=L/2* (F1)+2*L/3* (F2) ;
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