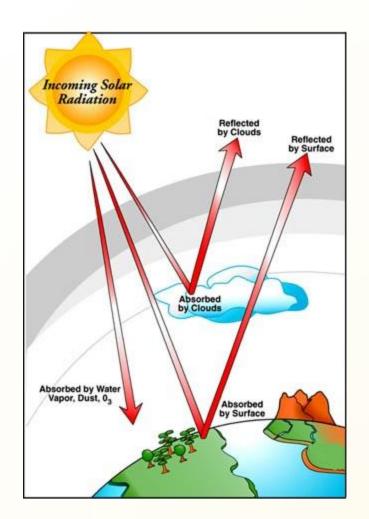
College of Engineering, Forestry, and Natural Sciences Dept. of Mechanical Engineering

Solar Irradiance Measuring Device

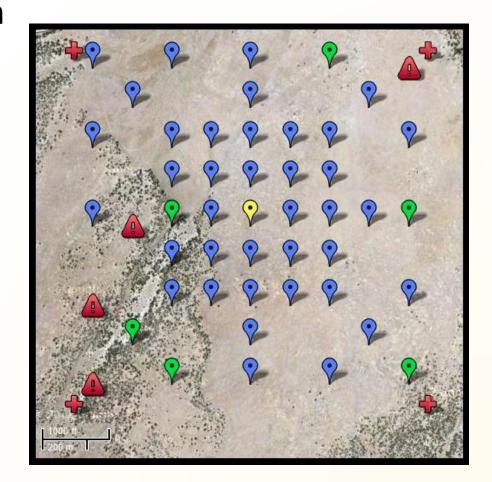
Joey Cavaretta
John Hills
Peter Journell
Nick Jurik
Tim Tormey
Allie Venezia

Overview


- Clients
- Project Definition
- Hardware Design
- Data Analysis
- Current Tasks
- Timeline

Clients

- NextEra Energy
 - Construction and operation of energy production sites
- Institute for Sustainable Energy Solutions
 - Dr. Tom Acker
 - David Willy
- Product targeted to power companies


Irradiance Definition

- Energy flux $\left[\frac{W}{m^2}\right]$
- Changes with weather
 - Inconsistent output
- Variance data used to determine viability of solar site

Current Site

- Located at COBar Ranch
 - 35 miles north of the
 San Francisco Peaks
- 1 square mile
- 50 sensors

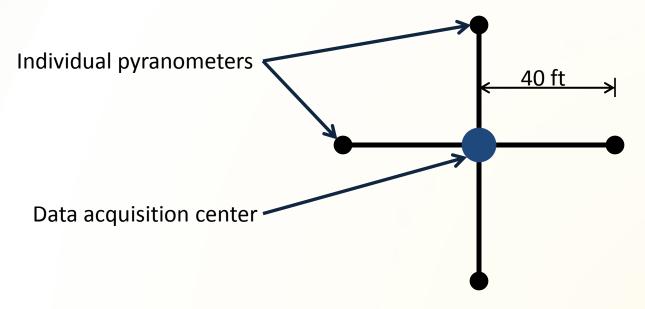
Needs Identification

Current problems:

- Large number of devices in use
- Long set-up time / permanent
- Large area usage
- Access issues
- Data collection errors
- High cost

Needs and Goals

Need Statement:

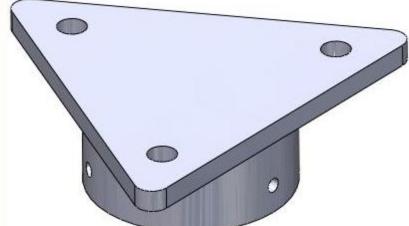

The current system is inefficient with its use of land, man hours, and produces poor data.

Goal:

Design a relatively small, portable solar irradiance measuring system that can accurately quantify variance in solar irradiance over a larger area.

Proposed Site

- 5 pyranometers
- One centralized data acquisition center
- Approximate radius of 40 feet


Tripod

- Pyranometers mounted on simple tripods
- Tripods secured to ground
 - Brackets at base of each leg
 - Stakes in earth
 - Expansion bolts in rock
- Galvanized Steel

Pyranometer Mount

- Slides onto top of tripod
- Secures device to tripod
- Allows pyranometer to be easily leveled
- Many inexpensive and simple options for production

Data Acquisition

Campbell Scientific CR-800

- Proven in industry
- 6 pyranometer channels
- Max sampling rate: 100Hz

Li-Cor LI-200 Pyranometer

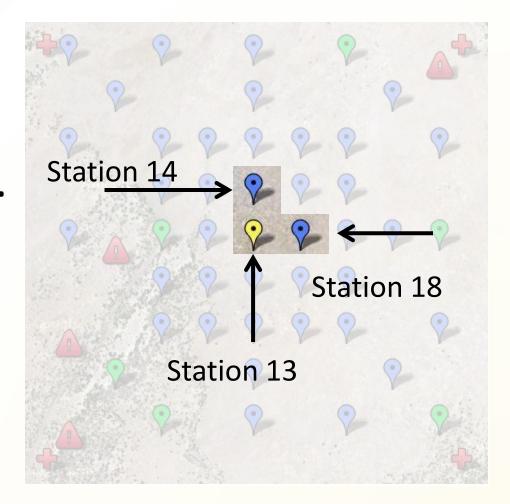
- Compatible with a Campbell Scientific Data Logger
- Average Error <5%

Loggernet

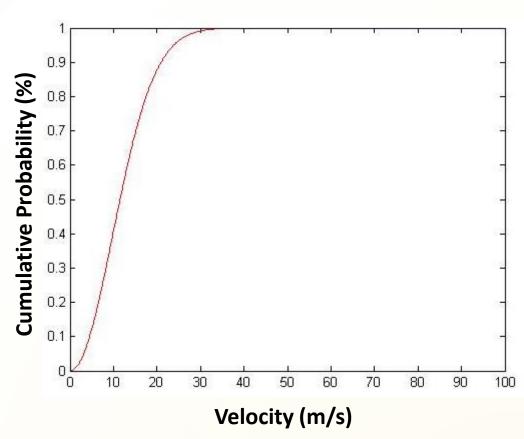
Datalogger interface program

Data Transfer

Wired:


- Simple setup
- Sensors come with 50 foot cable
- Negligible voltage drop
- Wires will be housed in flexible conduit
- Protects wires from
 - Cows
 - Rodents (eg. field mice)
 - Ultra violet rays
 - Water

Data Correlation


- Correlating Stations 14

 and 18 to Station 13
 gives X and Y
 components of velocity.
- Magnitude of found velocity: $V=12.2\frac{m}{s}$

Data Correlation Cont.

 Applied a special statistical distribution and found a cumulative distribution function (CDF)

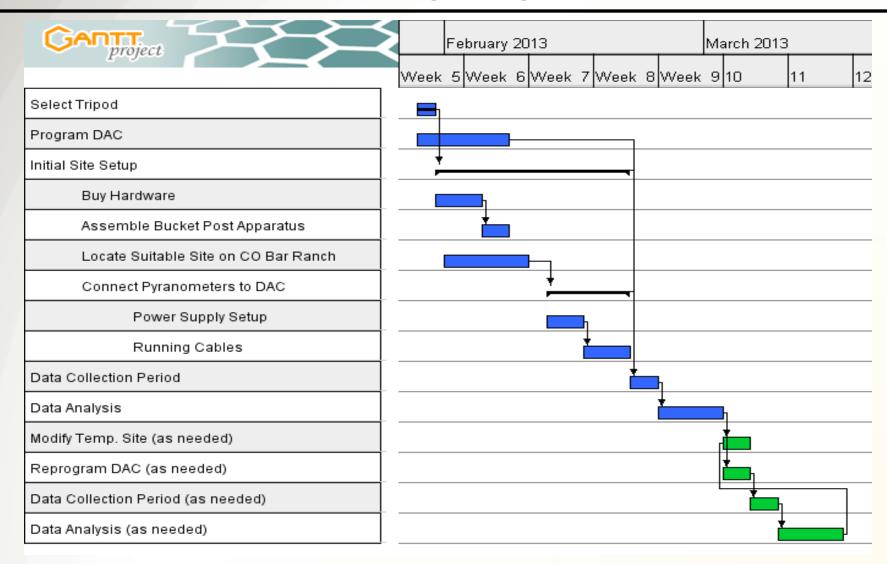
Data Correlation Cont.

 Using percentages from the CDF, the cloud velocities were found.

 Knowing these velocities and the distance between new sensors, a sampling rate was found.

Data Correlation Cont.

Cloud Velocities that can be Captured (Percent)	Sampling Rate (Hz)
65	1.16
70	1.24
75	1.33
80	1.43
85	1.56
90	1.71
95	1.96
100	∞


Current Individual Tasks

- Nick Jurik Data analysis coding.
- Allie Venezia Site setup coordinator.

- Joey Cavaretta Pyranometer mount fabrication.
- John Hills Pyranometer mount fabrication.

- Peter Journell Hardware and software interface.
- Tim Tormey Hardware and software interface.

Timeline

Resources

- Twidell, John, and Weir, Tony. *Renewable Energy Resources*. New York: Taylor and Francis Group, 2006.
- <www.envcoglobal.com/taxonomy/term/685/0>
- http://www.envcoglobal.com/catalog/product/davis-sensors-and-accessories/weather-station-mounting-tripod.html>
- "Prevailing Wind Direction." Http://www.wrcc.dri.edu/. N.p., n.d. Web. 03
 Nov. 2012. http://www.wrcc.dri.edu/htmlfiles/westwinddir.html
- Flood, Ronald K., Dr. Tom Acker, and David Willy. *Prescott Airport Solar Facility Solar Variability Study*. Tech. N.p.: n.p., n.d. Print.

Questions