College of Engineering, Forestry, and Natural Sciences Dept. of Mechanical Engineering

Solar Irradiance Measuring Device

Joey Cavaretta John Hills Peter Journall Nick Jurik Tim Tormey Allie Venezia

12/7/2012

Overview

- Clients
- Project Definition
- Design Analysis
- Data Analysis
- Future Plans
- Timeline
- References

Clients

- NextEra Energy
 - Construction and operation of energy production sites
- Institute for Sustainable Energy Solutions
 - Dr. Tom Acker
 - David Willy

Irradiance Definition

- Energy flux $\left[\frac{W}{m^2}\right]$
- Changes with weather
 - Inconsistent output
- Variance data used to determine viability of solar site

Current Site

- Located at COBar Ranch
 - 35 miles north of the San Francisco Peaks
- 1 square mile
- 50 sensors

Needs Identification

- Current problems:
 - Large number of devices in use
 - Long set-up time / permanent
 - Data collection errors
 - Large area usage
 - Access issues
 - High cost

Needs and Goals

Need Statement:

The current system is inefficient with its use of land, man hours, and produces poor data.

Goal:

Design a relatively small, portable solar irradiance measuring system that can accurately quantify variance in solar irradiance over a larger area.

Objectives

Objectives	Basis for Measurement	Units				
Scales Down	Fit into Current Site	Ft ²				
GPS Location	Data Collection	Ft				
Easy Set-up/Operation	Data Collection	Time				
Longevity	Durability	Months				
Size	Transportable	Ft ³				
Weight	Manageable	Lb				
Cost	Inexpensive	\$\$				

Constraints

- Data Correlation
- A_{surface} ≤ 7800 ft² (100 ft diameter circle)
- Safe data storage
- Setup Time ≤ 16 Man Hours
- Stand Alone Functioning
- Accurate sensor location
- Synchronous data collection
- Cost
- Longevity

Quality Function Deployment

		Engineering Requirements										
		Surface area	Set-Up Time	GPS Location	Data Storage	Frequency	Longevity	Packed Sized	Weight	Cost		
nts	Scales Down Current Site	Х						Х				
ner	Useable Data Collection			Х	X	Х						
uirr	Store Data Safely				X		X			Х		
bə	Easy to Set Up		Х						Х	Х		
er R	GPS Location for Each Sensor			Х	X							
m	Stand Alone Functioning				X		X			Х		
ısto	Time Stamped Data				X	Х						
CL	Inexpensive	Х								Х		
	Units	ft ²	hours	ft	days eq.	Hz	months	ft ³	Lb	\$		
		~7800	16	±1	30	1	14	30	50	5000		
		Engineering Targets										

+

(+)

+

╋

+

+

╋

┥

Tripod

- Instruments mounted on simple tripods
- Tripods secured to ground
 - Stakes in earth
 - Expansion bolts in rock
 - Found a tripod for \$31.44

Bucket Post

- 5 gallon buckets filled with concrete
- Sleeve formed in concrete for tee
- Sensors mounted to post

Data Acquisition

- Campbell Scientific CR-1000
 - Proven in industry
 - 8 pyranometer channels
 - Max sampling rate:100Hz

Li-Cor LI-200 Pyranometer

- Compatible with a Campbell Scientific Data Logger
- Average Error <5%</p>

This hardware was not chosen by design team, but provided by client

Data Transfer

• Wired:

- Simple setup
- Sensors come with 50 foot cable
- Negligible voltage drop

Wires will be housed in flexible conduit

Protects wires from

- Cows
- Rodents (eg. field mice)
- Ultra violet rays
- Water

Data Correlation

- Correlating Stations 14 and 18 to Station 13 gives X and Y components of velocity.
- Magnitude of found velocity: V=12.2 $\frac{m}{s}$

Data Correlation Cont.

0.9 Applied a special Cumulative Probability (%) 0.8 statistical 0.7 0.6 distribution and 0.5 found a cumulative 0.4 distribution 0.3 0.2 function (CDF) 0.1 0 'n 10 20 30 50 60 70 80 90 100 40

Velocity (m/s)

Data Correlation Cont.

- Using percentages from the CDF, the cloud velocities were found
- Knowing these velocities and the distance between new sensors, a sampling rate was found.

Data Correlation Cont.

Cloud Velocities that can be Captured (Percent)	Sampling Rate (Hz)
65	1.16
70	1.24
75	1.33
80	1.43
85	1.56
90	1.71
95	1.96
100	\sim
12/7/2012 Nick	Jurik 18

Future Plans

- Continue data analysis
- Research wind/cloud movement behavior
- Obtain and learn how to use hardware components
- Develop and construct new site

Time Line

GANTT	October 2012					November	December 2012				January 2013			
p. g.u	40	41	42	43	44	45	46	47	48	49	50	51	52	Week 1 Week
Needs Identification		<u>ه</u>	545	572	300	18	100	6	101		244	542	30'c	84 - 68
Initial Website Setup		{Wes Hil	ls}											
Research Aspect			1											
Concept Generation & Selection		<u>+</u>		-	3									
Individual Basic Design Generation		-												
Preliminary Design Elimination			,											
Individual In Depth Design Devlopement			+		-									
Concept Selection			-24	-										
Engineering Analysis				585 - 681 -	<u>+</u>									
Write MATLAB code to analyze data					{Nick	cJurik}		34						
Off-the-Shelf vs. Fabrication					i i									
Conference with NextEra				{Nick.	Jurik},Joey	Cavaretta,W	es Hills							
Final Design and Proposal								1						
Aquire Equipment														
Analyze Cloud and Wind Data														
Report 1		•												
Presentation 1		+												
Presentation 2					E									
Report 2					•									
Presentation 3							í.							
Meeting with Professor Kosaraju								•						
Report 3								+						
Presentaion 4														
Report 4										•				

Resources

- Twidell, John, and Weir, Tony. *Renewable Energy Resources*. New York: Taylor and Francis Group, 2006.
- www.envcoglobal.com/taxonomy/term/685/0
- http://www.animatedlighting.com/learn/wiretree.asp
- "Prevailing Wind Direction." *Http://www.wrcc.dri.edu/*. N.p., n.d. Web. 03 Nov. 2012. <http://www.wrcc.dri.edu/htmlfiles/westwinddir.html>
- Flood, Ronald K., Dr. Tom Acker, and David Willy. *Prescott Airport Solar Facility Solar Variability Study*. Tech. N.p.: n.p., n.d. Print.

Questions