Separation Connector

By Koll Christianson, Amelia Fuller, Luis Herrera, Zheng Lian, and Shaun Shultz Team 19

Analysis of Final Design Concepts

Document

Submitted towards partial fulfillment of the requirements for Mechanical Engineering Design – Fall 2012

Department of Mechanical Engineering Northern Arizona University Flagstaff, AZ 86011

Table of Contents

ABSTRACT	3
PROBLEM STATEMENT	3
SELECTED DESIGNS	3
SPECIFICATIONS	7
ASSUMPTIONS IN ANALYSIS	8
ANALYSIS OF COMPONENTS	8
JPDATED GANTT CHART	. 10
WORKS CITED	. 11
APPENDIX A	. 12
APPENDIX B	. 19
APPENDIX C	. 26

ABSTRACT

By request of Mary Rogers and Orbital Sciences Corporation, our team has begun analysis on two final design concepts. Both designs have undergone many modifications to meet the customer's specifications. We will present our evidence to Mrs. Rogers to choose a final design to continue the analysis on. The two designs being considered in this report are:

- 1. Spring-loaded latch and lever release mechanism
- 2. Ball Bearing detent

This report will explain each design and list the renovations each have undergone. It will also list the assumptions made and demonstrate the preliminary analysis that was used to decide which of the two design ideas is the best fit for our client. Lastly, our team will give a recommendation of the design we believe is the best solution to our client's problem.

PROBLEM STATEMENT

The goal of this project is to design and prototype a perfectly reliable, inexpensive, and manufacturable separation connector.

SELECTED DESIGNS

Originally, we chose to do the "Spring-Hammer" and "Ball Bearing" designs (see Report #2 for design descriptions). However, after consulting with our client we found that our designs had a major flaw. Our designs required modifications to both ends of the separator connector, but our client informed us that the male end of the connector must remain unchanged. This required our designs to be modified to meet the customer's requirement. Below are the newly modified design concepts.

- 1. Spring-loaded latch and lever release mechanism
 - a. **Original** This design is a modification of the original "Spring-Hammer" design. The original design incorporated a hammer that would, when released, spring forward and hit the male end causing the de-mate. We found that the hammer was unnecessary because the rocket would provide a sufficient pulling force to demate the device on its own.

Figure 1: Original lever-action design concept

b. Modified – We decided to remove the hammer and change it to latches that hold the connector together. The latches are on the outside of the device and are spring-loaded to keep them in constant tension with the outside of the female sleeve. When the male end is twisted into the mating position, the latches "click" onto the outside of the male end and complete the mate. The male end in this design is the original design. The male end twists into the coupling connector and mates with the female end. The female end is inserted into the coupling and is stopped by a small extrusion on the inside of the coupling connector. The last component of this design is an outer collar. The outer collar has three grooves cut on the inside of it that act as tracks for the latches and a leash (not shown) attached to the outside. The notches on the bottom of the sleeve push the levers/latches down when the collar is pulled down. When this occurs, the latches will detach from the male end and both ends are pulled away from each other; thus, achieving de-mate.

Figure 2: Modified spring-loaded latch and lever release mechanism (exploded view)

Figure 3: Modified spring-loaded latch and lever release mechanism (cross-sectional view)

- 2. Ball bearing detent
 - a. **Original** This design is a modification of the original "Ball Bearing" design. The original design was very simplistic. It required the male end to have ball bearings with springs installed into it and a female receiving end. The main concern with this design was that it might prematurely de-mate and it did not have the bayonet pins that our client wanted.

Figure 4: Original ball bearing design concept

b. Modified – For this design, we decided to make a coupling attachment that avoided modifying the male end. The coupling has the original one-third turn grooves cut into it, but it also contains a slot cut into it where the ball bearings can insert themselves. The female end of this separation connector contains four evenly spaced ball bearings near the bottom of the piece and a leash connected on the bottom extrusion. To mate the device, simply twist the male end one-third of a turn into the coupling and push the female end into the coupling until it "clicks". To de-mate the device, either twist the male end counter-clockwise or pull on the leash located on the female end with enough force to compress the springs and retract the ball bearings.

Figure 5: Modified ball bearing detent design (exploded view)

Figure 6: Modified ball bearing detent design (cross-sectional view)

SPECIFICATIONS

This section includes the specifications to which our design must abide by. These specifications were given by our client to ensure the separation connector meets Orbital Sciences Corporation's rigorous standards. Below is a list of the required specifications:

- Bayonet grooves must match military specifications
- Minimum of 200 lbf for dynamic de-mate
- Between 10-30 lbf for static de-mate
- Leash must be able to withstand a minimum pulling force of 300lbf
- Must be able to statically mate/de-mate a minimum of 50 times
- Must withstand a temperature gradient of $-34^{\circ}C 71^{\circ}C$ with no damage to the material
- Must withstand a static acceleration of 15 G-Force
- Must not fail during a drop test
 - From a height of 3 feet dropped onto a concrete floor
- Must pass a "rattle test"
 - The object is shaken by hand or a vibration machine and must not rattles or becoming de-mated
- Must not exceed an increase in size of 25 % greater than the original ~1.43" inner diameter for male end
- Must not exceed an increase in size of 25 % greater than the original ~1.42" outer diameter for female end

ASSUMPTIONS IN ANALYSIS

We have not finalized the dimensions for our designs; therefore, the calculated values for our analysis are all approximates. Additional assumptions for the analysis of the designs include:

- 1. Material used is Aluminum 6061 alloy
- 2. Horizontal de-mate (no pull angle)
- 3. No friction while de-mate occurs
- 4. Perfect reliability
- 5. Dimensions of the device are correct

ANALYSIS OF COMPONENTS

Using SolidWorks' stress analysis function, we were able to perform a simple analysis on both of our designs. The stress analysis function helped create stress diagrams of certain components of each design.

1. Spring-loaded latch and lever release mechanism

Latch:

- a. Tension at hole where spring is attached
- b. Forces of male and female end create opposing forces on connection

Lever:

- a. Fixed point at the point where the lever is connected to latch
- b. Constant bending stress from spring resistance and release

Figure 7: Stress analysis of spring-loaded latch and lever release mechanism

- 2. Ball bearing detent
 - a. Stress point where bayonet pin locks in place, this point is fixed
 - b. Inner collar for bearing connection does not have sufficient enough stress to be considered

Figure 8: Stress analysis of ball bearing detent design

We also analyzed specific components of the ball bearing detent design where crucial forces and stresses were located. These parts were analyzed using SolidWorks, a 3D CAD package with a Finite Element Analysis simulator. The individual components are listed below with their stress analysis summarized. Appendices A, B, and C show the simulations of each part we built using SolidWorks. An important addition that is not seen in our analysis is the pressure applied by the ball bearings. There must be enough pressure for the ball bearings to be in contact with the center coupling to avoid pre-mature de-mating.

UPDATED GANTT CHART

This section contains our updated Gantt chart. The Gantt chart shows the deadlines we need to meet as well as deliverables that have already been completed. This schedule is tentative and is subject to change. See figure 9 below for updated Gantt chart. (Updated 11/16/2012)

Figure 9: Updated Gantt chart

WORKS CITED

"A World of Interconnect Solutions." *Glenair*. Glenair, 2012. Web. 4 Oct 2012. http://www.glenair.com/interconnects/mildtl38999/>.

"Amphenol Tri-Start Subminiature Cylindrical Connectors." *Powell Electronics*. Powell Electronics, n.d. Web. 4 Oct 2012. http://www.powell.com/Amphenol/D38999/D38999catalog.pdf>.

"CADimensions Store Catalog." *CADimensions Inc.* CADimensions Inc., 2012. Web. 6 Nov 2012. <http://shopping.netsuite.com/s.nl/c.635262/sc.2/category.1926/.f>.

"Conduit and Wire Weight Calculator." *Muska Electric Co.* Muska Electric Co, 2008. Web. 6 Nov 2012.

<http://www.muskaelectric.com/tools/conduit-and-wire-weight-calculator>.

APPENDIX A Simulation of Male connector with pins

Date: Wednesday, November 07, 2012 Designer: Solidworks Study name: SimulationXpress Study Analysis type: Static

Model Information

Material Properties

Model Reference	Properties		Components
	Name: Model type: Default failure criterion: Yield strength: Tensile strength:	6061 Alloy Linear Elastic Isotropic Max von Mises Stress 7998.61 psi 17996.9 psi	SolidBody 1(CirPattern 1)(Male connector with pins)

Loads and Fixtures

Fixture name	Fixture Image	Fixture Details
		Entities: 4 face(s) Type: Fixed Geometry
Fixed-1		

Load name	Load Image	Load Details
Force-1		Entities: 2 face(s) Type: Apply normal force Value: -120 lbf

Mesh Information

Mesh type	Solid Mesh
Mesher Used:	Standard mesh
Automatic Transition:	Off
Include Mesh Auto Loops:	Off
Jacobian points	4 Points
Element Size	0.0793966 in
Tolerance	0.00396983 in
Mesh Quality	High

Mesh Information - Details

Total Nodes	17191
Total Elements	9129
Maximum Aspect Ratio	18.657
% of elements with Aspect Ratio < 3	76.8
% of elements with Aspect Ratio > 10	0.175
% of distorted elements(Jacobian)	0
Time to complete mesh(hh;mm;ss):	00:00:02
Computer name:	EGR317-31

Study Results

Name	Туре	Min	Max
Stress	VON: von Mises Stress	1.30404 psi Node: 7084	2412.71 psi Node: 15872
Model neme: Main Connector with pine Shuhy neme: Similation/Xirens Shuhy Pot type: Static nodel atress Stress Detormation acade: 1741.83	Tale connector with pins-Simulation	Xpress Study-Stress-Stress	von Mees (ps) 2,412.7 2,211.8 2,200.8 1,009.9 1,008.9 1,008.1 0,005.1 0,006.1 0,005.1 0,006.0 0,006.1000.00000000000000000000000000000
111	Philo Simulation		-

Name	Туре	Min	Max
Displacement	URES: Resultant Displacement	0 mm	0.00289251 mm
		Node: 1	Node: 698

Name	Туре
Deformation	Deformed Shape
Model Instein: Male connector with pans Depty prante: Simulatio Super Status Deformation scale: 1741.83	
Male connector	with pins-SimulationXpress Study-Displacement-Deformation

Name	Туре	Min	Max
Factor of Safety	Max von Mises Stress	3.3152 Node: 15872	6133.71 Node: 7084
Made anne Male connector with pins Buty name. Smuldton/tyres: Staty Pet type: Factor of Satety Factor of Satety Offetton: Mark of Marks Red < FOS=1.5 < Blue	tor with pins-Simulation Xpress Stu	dy-Eactor of Safety-Eactor	r of Safety
Mate connector with phis-simulation/spices study-ractor or safety-ractor of safety			

APPENDIX B Simulation of detach part

Date: Wednesday, November 07, 2012 Designer: Solidworks Study name: SimulationXpress Study Analysis type: Static

Model Information

Material Properties

Model Reference	Properties		Components
	Name: Model type: Default failure criterion: Yield strength: Tensile strength:	Alloy Steel Linear Elastic Isotropic Max von Mises Stress 89984.6 psi 104982 psi	SolidBody 1(CirPattern3)(detach part)

Loads and Fixtures

Fixture name	Fixture Image	Fixture Details
Fixed-3		Entities: 1 face(s) Type: Fixed Geometry

Load name	Load Image	Load Details
Force-2		Entities: 1 face(s) Type: Apply normal force Value: -200 lbf

Mesh Information		
Mesh type	Solid Mesh	
Mesher Used:	Standard mesh	
Automatic Transition:	Off	
Include Mesh Auto Loops:	Off	
Jacobian points	4 Points	
Element Size	0.0790378 in	
Tolerance	0.00395189 in	
Mesh Quality	High	

Mesh Information - Details

Total Nodes	17894
Total Elements	9481
Maximum Aspect Ratio	24.04
% of elements with Aspect Ratio < 3	85.6
% of elements with Aspect Ratio > 10	1.94
% of distorted elements(Jacobian)	0
Time to complete mesh(hh;mm;ss):	00:00:02
Computer name:	EGR317-31

Model name: detach part Study name: SimulationXpress Stud Mech tung: Solid mech

Study Results

Name	Туре	Min	Max
Stress	VON: von Mises Stress	20.8509 psi	2808.85 psi
		Node: 8868	Node: 74
Model name: detach part Study name: Smulation/opress Study Piot hyse. Static nodal stress Stress Detormation scale. 4219.66	detach part-Simulation X press	Study-Stress-Stress	von Mase (pa) 2,808,9 2,578,5 2,344,2 2,111,9 1,879,5 1,1647,2 9,60,2 7,17,9 4,65,5 2,33,2 2,0,9 → Vield strength 88,9
l	detaen part Sindiatolixpress	Stady Buess Buess	

Name	Туре	Min	Max
Displacement	URES: Resultant Displacement	0 mm Node: 98	0.00116353 mm Node: 910

Name	Туре
Deformation	Deformed Shape
Deformation	
datach n	part Simulation Variase Study Displacement Deformation
detach p	מוי-סווועומוטוואטונאט סועש-שואטומרישווטווישנוטו

Name	Туре	Min	Max
Factor of Safety	Max von Mises Stress	32.0361 Node: 74	4315.62 Node: 8868
Notel name detecty part Subyr parts: Sindel of Yester Factor of Safety Factor Part of Safety Factor of Safety Factor Red < FOS = 1.5 < Bue	ab part Simulation Varians Study Eq.	Trode: 74	INOUE: 8808
detad	in part-simulationApress Study-Fa	cior of Safety-Factor of Sa	lety

APPENDIX C Simulation of INT male mate

Date: Wednesday, November 07, 2012 Designer: Solidworks Study name: SimulationXpress Study Analysis type: Static

Model Information

	Model name: Current Config	INT male mate guration: Default	
Solid Bodies			
Document Name and Reference	Treated As	Volumetric Properties	Document Path/Date Modified
CirPattern2	Solid Body	Mass:0.0289483 lb Volume:0.296773 in^3 Density:0.0975437 lb/in^3 Weight:0.0289287 lbf	\\EGRSHARES\Home s\zl33\Desktop\ME 476C Presentation 3\123\INT male mate.SLDPRT Nov 07 18:13:34 2012

Material Properties

Model Reference	Properties		Components
	Name: Model type: Default failure criterion: Yield strength: Tensile strength:	6061 Alloy Linear Elastic Isotropic Max von Mises Stress 7998.61 psi 17996.9 psi	SolidBody 1(CirPattern2)(INT male mate)

Loads and Fixtures

Fixture name	Fixture Image	Fixture Details
Fixed-1		Entities: 1 face(s) Type: Fixed Geometry

Load name	Load Image	Load Details
Force-1		Entities: 1 face(s) Type: Apply normal force Value: -120 lbf

Mesh Information

Mesh type	Solid Mesh
Mesher Used:	Standard mesh
Automatic Transition:	Off
Include Mesh Auto Loops:	Off
Jacobian points	4 Points
Element Size	0.0801434 in
Tolerance	0.00400717 in
Mesh Quality	High

Mesh Information - Details

Total Nodes	16675
Total Elements	8455
Maximum Aspect Ratio	17.506
% of elements with Aspect Ratio < 3	52.1
% of elements with Aspect Ratio > 10	0.177
% of distorted elements(Jacobian)	0
Time to complete mesh(hh;mm;ss):	00:00:52
Computer name:	EGR317-31

Model name: INT male mate Study name: SimulationXpress Stud Made tuno: Solid made

Study Results

Name	Туре	Min	Max
Stress	VON: von Mises Stress	0.00543075 psi Node: 12245	1324.06 psi Node: 7378
Model name: NT male mate Study name. Smillation/Qrees Study Plot type: Static nodal stress Stress Deformation scale: 7515.22	INT male mate-SimulationXpr	ress Study-Stress-Stress	von Mæs (pd) 1,324,1 1,121,7 1,103,4 993,0 682,7 7,772,4 682,0 651,7 4,41,4 331,0 220,7 1,110,3 0,0 → Vield strengtr 7,980
<u> </u>		ess staaj subb subb	

Name	Туре	Min	Max
Displacement	URES: Resultant Displacement	0 mm	0.000727802 mm
		Node: 199	Node: 1797

Name	Туре	Min	Max
Factor of Safety	Max von Mises Stress	6.041 Node: 7378	1.47284e+006 Node: 12245
Model name: RT mele mele Shary mone: Smulelpov/grees Study Pid type: Pactor of Safety Factor of Safety Criterion: Nurvo Miees Stress Red < FOS = 1.5 < Blue		Node: 7378	Node: 12245
INT n	nale mate-SimulationXpress Study	-Factor of Safety-Factor	of Safety