Separation Connector Improvement for Orbital Sciences Corporation

1

College of Engineering, Forestry, and Natural Sciences Department of Mechanical Engineering Northern Arizona University

Koll Christianson, Luis Herrera, Zheng Lian

Zheng Lian

Presentation Overview

- Project Overview
- Problem Statement
- Design Requirements
- Design Proposal
- First Prototype
- Deflection Analysis
- Final Design
- Cost
- Results
- Conclusion

Zheng Lian

Our Client

Mary Rogers

 Electronics Packaging and Actuator Manager at Orbital Sciences Corporation

Project Overview

Original Separation Connector

Zheng Lian

Zheng Lian

Problems With Old Design

Zheng Lian

Problem Statement

 The goal of this project is to design and prototype a relatively easy to manufacture, inexpensive, and perfectly reliable separation connector. Design Requirements

- Male end cannot be changed
- Pass military specification testing
- Separates with10-30 lbf.
- Withstands 200 lbf.
- Easy to manufacture
- Mate and de-mate at least 50 times without failure

Luis Herrera

• Cannot exceed an increase in size of 25% greater than the original design

Luis Herrera

Design Proposal

Preliminary Design

Luis Herrera

FDM Prototype

Modifications to Design

Combined:

- Female End
- Ball Bearing Retention Ring

Added:

Spring Retention Ring

Changed:

Coupling

Removed:

- Pressure plate
- Ball Bearing Retention Ring

Luis Herrera

Deflection Analysis

Final Design (Exploded View)

Final Design Animation

Final Design (Cross-Sectional View)

Metal prototype (Exploded View)

Metal prototype (Assembled)

Manufacturing

- Created the ball bearing crimp tool
 - Allows for the removal of the Spring Retention Ring
- Could not cut helical grooves
 Straight slots instead for prototype

Cost Analysis

- Original connector costs ~\$400
- Budget of \$100
- Spent \$80
 - ~\$60 on Aluminum Stock
 - ~\$10 on the Leash
 - ~\$5 on Ball Bearings
 - ~\$5 on Springs

Conclusion

- Design requirements met
 - Does not fail after 50 mate/de-mates
 - De-mates with ~27 lbf.
 - Male end was not changed
 - New design is approximately 10% larger than the original
- Merits of new design
 - Easy to manufacture
 - Inexpensive
 - More reliable

Acknowledgments

- Mrs. Mary Rogers of Orbital Sciences Corporation
- Dr. Srinivas Kosaraju of Northern Arizona University
- Professor Perry Wood of Northern Arizona University
- Tom Kothrin of Northern Arizona University's Machine Shop

Questions?