

Release Lanyard Project

April 26th 2013

By: Andrew Baker, Tim Haynes, Styson Koide, David Lofgreen, Carly Siewerth, & Chris Temme

Andrew Baker

Overview

- Client
- Problem Statement
- Current Design
- New Design
- Testing
- Conclusion

Client

Missile Systems

Raytheon

- Founded in 1922
- Global presence in 19 countries
- Products developed and manufactured:
 - Microwave
 - Radar Systems
 - Missile Systems
 - Infrared Systems

Release Lanyard

- Is used to arm the weapon
 - Transfers a mechanical force to an electrical signal
 - Once the slider is pulled, power is supplied to activate the weapon

Problem Statement

- Weapon systems are not activating
 Due to freezing temperatures and debris
- Encounter poor installation
- Current design cost is too high

General Constraints

- ▶ Temperature range -60°F to 200°F
- Activation force range of 35 to 60lbf.
- Breaking force of linkage 75lbf.
- Keep new design under \$300

Northern Arizona University Department of Mechanical Engineering

David Lofgreen

Current CAD Design

Northern Arizona University Department of Mechanical Engineering

David Lofgreen

Current Activation Slider

New Slider Design

New CAD Design

Northern Arizona University Department of Mechanical Engineering

Chris Temme

*Isometric

New Activation Slider

Northern Arizona University Department of Mechanical Engineering

Chris Temme

New Activation Slider

Northern Arizona University Department of Mechanical Engineering

Chris Temme

Finite Element Analysis

First Iteration

Finite Element Analysis

Final Iteration

Northern Arizona University Department of Mechanical Engineering

Styson Koide

Model Testing

- Materials
 - Battery
 - Light
 - Electrical wire
 - Battery mount

Experimental Testing

- 30 minute freeze time
- Spray every 10 minutes
- 2 types of freezing orientations

Vertical (Moderate Icing)

Horizontal (Heavy Icing)

Northern Arizona University Department of Mechanical Engineering

Styson Koide

Testing Conditions (Moderate)

Problem Regions

Northern Arizona University Department of Mechanical Engineering

Carly Siewerth

Testing Conditions (Heavy)

Problem Regions

Testing Results

	No Ice Build-up	Μ	Moderate		Heavy		
Weight (lbs.)	1	1	2	3	1	2	3
35	Pass	Fail	Pass	Fail	Fail	Fail	Fail
40	Pass	Pass	Fail	Fail	Fail	Fail	Fail
45	Pass	Pass	Fail	Fail	Fail	Fail	Fail
50	Pass	Pass	Fail	Pass	Pass	Pass	Fail
55	Pass	Pass	Pass	Pass	Pass	*Fail*	Fail
60	Pass	Pass	Pass	Pass	Pass	Pass	Pass

Northern Arizona University Department of Mechanical Engineering

Carly Siewerth

Current Design

Comparison

	Current Design	New Design	Reduction (%)		
Volume (in ³)	5.50	5.36	-2.55		
Mass	0.21	0.21	-0.28		
S.A. (in ²)	63.22	58.84	-6.93		
Concerning S.A. (in ²)	11.48	6.74	-41.29		
Mechanical Component	s 64.00	52.00	-18.75		
Assembly Operations	6.00	4.00	-33.33		
Machining Hours	2.60	2.10	-19.23		
Machining Costs (\$)	200.00	150.00	-25.0		

Conclusion

- Problem Statement
 - Current weapon systems are not activating
 - Due to freezing temperatures and debris
 - Encounter poor installation
 - Current design cost is too high

New Design

- Improvements:
 - Works under extreme conditions
 - Fewer parts
 - Easier to install

Acknowledgments

- Stephen Larimore
 - Raytheon Department Manager
- Kelly Covington
 - Raytheon Mechanical Engineer
- Shawn Vause
 - Raytheon Process Engineer

Questions?

Northern Arizona University Department of Mechanical Engineering

Tim Haynes