



# **Release Lanyard Project**

October 8<sup>th</sup> 2012

<u>Team 5</u> By: Andrew Baker, Tim Haynes, Styson Koide, David Lofgreen, Carly Siewerth, & Chris Temme

**Carly Siewerth** 

## Overview

- Introduction
- Needs statement
- Problem statement
- Goals
- Objectives
- Constraints
- House of Quality
- Gantt Chart



### Introduction

- Raytheon History and Area Expertise
- Current release lanyard design

### **Needs Statement**

 Current design for an arming system lanyard does not address issues relating to extreme temperatures and environmental effects

### **Problem Description**

- Issues with freezing temperatures and debris
- Issues not activating weapons system
- Issues with poor installation

### Goals

 To design a reliable, low cost release lanyard that can withstand extreme temperatures and environmental effects

### **Objectives**

| Objectives                              | Basis for Measurement                                 | Units     |
|-----------------------------------------|-------------------------------------------------------|-----------|
| Inexpensive                             | Manufacturing Cost Based on<br>Current Design         | \$\$      |
| Maintain Current Location<br>of Devices | Locations Based on Current<br>Design                  | Meters    |
| Installation and Assembly               | Timed Trial                                           | Seconds   |
| Successful Activation of<br>Devices     | Minimum Force Required                                | Newtons   |
| Low Susceptibility to<br>Contamination  | Amount of Contamination<br>Required to Induce Failure | Kilograms |
| High Performance<br>Reliability         | Number of Successful Attempts vs. Failed              | %         |
| Increase Maneuverability                | <b>Pivot Radius of Devices</b>                        | Meters    |

### Constraints

- Can't change lanyard attach point
- Testing in harsh conditions
  - Extreme temperature ranges
  - Contaminants and debris
  - Weather conditions

#### Cost



Northern Arizona University Mechanical Engineering Department

Chris Temme

### **Quality Functional Development**

|                                        | Engineering Requirments |        |      |                |                  |                 |
|----------------------------------------|-------------------------|--------|------|----------------|------------------|-----------------|
|                                        | Material Thickness      | Weight | Cost | Yield Strength | Force Requirment | Size Dimensions |
| Activates Weapon                       |                         |        |      |                | Х                |                 |
| Inexpensive                            |                         |        | X    |                |                  |                 |
| Ease of Assembly                       |                         |        | X    |                |                  |                 |
| Ease of Installation                   |                         |        | X    |                |                  |                 |
| Impervious to Environmental Conditions |                         | X      |      | X              |                  |                 |
| Set Installation Locations             |                         |        | X    |                |                  | X               |
| Units                                  |                         | kg     | \$   | Мра            | N                | m <sup>2</sup>  |
|                                        | Engineering Targets     |        |      |                |                  |                 |

### House of Quality



### **Gantt Chart**



### **Gantt Chart**



### References

- Stephen Larimore
  - Raytheon
  - Department Manager
- Kelly Covington
  - Raytheon
  - Mechanical Engineer

# **Questions?**