Elk Ridge Ski Area: Poma Lift Stick

Progress Report

Team Members:

Kristin Coady Megan Cawley Amy Cook Yaohui Wang Liam Andrus

Northern Arizona University Mechanical Engineering Department

Overview

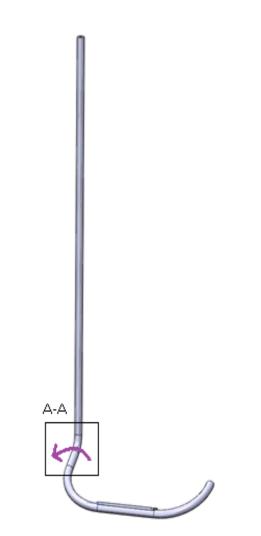
- Problem Statement
- Constraints
- Design
- Continued Research
- Prototyping
- Testing
- Conclusion
- Gantt Chart

Problem Statement

- Issues:
 - Travel on snowboard not the same as on skis
 - Not the same support and comfort ascending the mountain
- "The current Poma Lift stick does not accommodate skiers and snowboarders with equal support and comfort."
- Goal:
 - Design a transportation device that provides skiers and snowboarders with equal amounts of support and comfort.

Amy Cook

Constraints

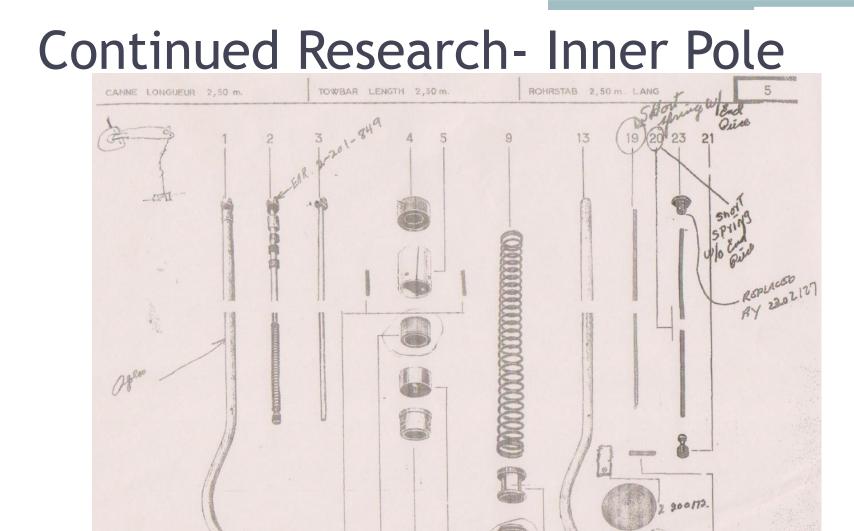

- Must cost less than \$200.00
- Dismount in less than 30 s
- No distance between snow and person
- Must vary in height 0.5 meters
- 1.5 m head clearance
- Hold 180 kg with less than 5 mm deformation.

Amy Cook

- Must have a 40 year life
- New attachment configuration dimensions equal old

Proposed Design

- Basic shape is U-hook
- Flat plate that acts a platform for riders to lean against
- Roller bearing to accommodate for straight and goofy snowboard riders
- Material is AISI 1030 Steel


Megan Cawley

Modifications

- Analysis redone with AISI 1020 steel
- Roller bearing removed
 - Could not locate appropriate size bearing
 - Material wear due to weather
 - Pin Design considered stresses too high
- Handle added
 - More stability needed with bearing removed
- Dimensions reduced to better match current Poma

Continued Research- Materials

- ASTM A53 Schedule 40 Piping
 - Lower yield strength than 1030 but still suitable
 Priced between \$5 \$10 per foot
- ASTM A53 Schedule 80
 Too thick and heavy for design requirements
- Seamless Tubing
 - Possibly safer for stress loads
 - More expensive possibly out of budget range

2-060-145

Kristin Coady

Prototyping

- Creating prototype from one solid pipe bent to design shape
 - Handle and plate welded on
- Machining
 - NAU Machine Shop does not have the necessary machinery
 - Made contact with Scott of American Spring- full shop in Flagstaff
- Deadline: March 1st
 - Before snow melts

Shop Testing

- Engineering Analysis:
 - Large safety factor
 - 3D modeling showed low stresses at design loads
 - Minimal shop testing required
- Secure the outer pole assembly using weighted blocks and standing walls
- Weight will be applied to the areas that the pole has been machined (i.e. the bends/critical points)
- Mechanical Testing of upper spring assembly
 True fixed point of the system highest stresses

On Site Testing

Test at Elk Ridge Ski Area

- Test on the current Poma lift system
- Invite selected riders to try the prototype
 - People of extreme weights and heights
 - Without demonstration of use
- Question about the comfort of the design and its ease of use
- Modify prototype if needed

Conclusion

- Modified design
 - Modifications still meet engineering analysis and requirements
- Material to be purchased in next couple of weeks
- Inner pole to be disassembled to ensure that new outer pole design will be compatible
- Prototype to be manufactured at shop in town
 - NAU machine shop not able to
 - Deadline: March 1st
- Minimal shop testing based on engineering analysis
- On site testing
 - Test on current Poma lift system with a wide variety of riders
 - Use feedback to see if modifications need to be made

Liam Andrus

12

Spring Semester Gantt Chart

	JAN			MARCH				APRIL						
FUTURE TASKS	w3	w4	w1	w2	w3	w4	w1	w2	w3	w4	w1	w2	w3	w4
Roller Assembly														
Research gaskets and seals														
Research bearing lubrication														
Design a bearing with limited motion	_	-												
Final Design of Roller Assembly														
Material Selection														
Research Materials														
Purchase materials			•											
Protype Building														
Outer Pole						I								
Inner Pole Assembly														
Flat plate														
Prototype Assembly					Ħ									
Testing/Modifications														
In Shop														
On mountain														
Spring Assembly														
L														

Amy Cook