2013 UGRADS Symposium

Nestlé Purina Dryer Efficiency

Daniel Andenmatten, Brandon Hoffman, Nathan Kish, Chris Simpson, Pengfei Wu

College of Engineering, Forestry & Natural Sciences

Overview of Presentation

- Company Overview
- Review of Problem Statement
- Introduce Dryer Operation
- Design Requirements
- Overview of Design Solution
- Thermodynamic Model
- Thermodynamic Analysis
- Heat Transfer Model
- Heat Transfer Results
- Cost Analysis
- Conclusion

Introduction

- Nestlé Purina Overview
- Problem
 - Dryer 3 uses significantly more energy than the other four dryers to extract moisture from the product.

Current System

Design Requirements

- Product must be dried to meet 11.5% moisture content
- Outlet air temperature of heat exchanger to be 280°F (410 K)
- Dryer must process 200 tons of food per day
- Less than 3 year payback period

Design Development

Design Type	Cost		Moisture Control		Production		Total
	Value	Normalized Value	Value	Normalized Value	Value	Normalized Value	
Change steam properties. Latent heat, pressure, density, etc.	9	1.899	7	0.714	8	5.488	8.101
Analyze air flow	10	2.11	5	0.51	7	4.802	7.422
Natural Gas Conversion	1	0.211	10	1.02	8	5.488	6.719
New steam coil design	7	1.477	8	0.816	6	4.116	6.409
Dry air between sections	5	1.055	5	0.51	7	4.802	6.367

Design Process

- Using thermodynamics and heat transfer to determine:
 - Efficiency of steam dryer compared to other dryers
 - 34.7 % less inch food per steam flow rate
 - Where largest losses occur
 - Steam traps
 - Steam heat exchanger
 - Cost analysis of natural gas burner versus steam
 - Natural gas burners more efficient
 - Natural gas burner conversion
 - Analysis of one thermodynamic zone

Current Steam Heat Exchanger

8

Source: Moran, Michael J., and Howard N. Shapiro. *Fundamentals of Engineering Thermodynamics*.

Thermodynamic Model

Thermodynamic Results

- Used Interactive Thermodynamic (IT) software
- Calculated amount of heat transfer needed to occur in order to meet energy transfer requirements
 - Approximately 123,000 BTU per day
- This results in a total cost of \$775.20 per day

Materials & Equipment

- Using 304 Stainless Steel pipes with fins
 - Melting temperature of 1673 K
 - Corrosive resistant
 - Easy to clean and maintain
 - Fits in with Nestlé's kitchen concept
- Burner with automated valves
 - Control amount of Natural Gas and air
 - Safety:
 - Prevents back flow
 - High operating temperatures

Combustion Requirements

- Natural gas is 95% Methane (CH₄)
- Using Enthalpy of formation values, we are able to calculate the temperature of the products
- Combustion with Methane and air under theoretical conditions:

 $CH_4 + 2(O_2 + 3.76N_2) = CO_2 + 2H_2O + 7.52N_2$

• This results in a temperature of the products of 2328 K

Combustion Requirements

 In order to maintain at least a factor of safety of 2.5 of the melting temperature of stainless steel we used 1200% theoretical air

 $CH_4 + 12 * 2(O_2 + 3.76N_2) = CO_2 + 2H_2O + 22O_2 + 90.24N_2$

This provides a temperature of the products of 533 K

Combustion Requirements

- The law of Conservation of Matter states what goes in must come out
 - Mass flow rate of the products must be the same as the reactants
- Used densities of Air and Methane at NTP (1atm and 293K)
 - Calculated the daily input of Methane to be 37.36 $\frac{ft^3}{day}$
 - Which provides 38, 111. 20 $\frac{BTU}{day}$
 - Total estimated cost is \$196.65

Heat Transfer

SolidWorks Flow Simulation

- Computational Fluid Dynamics (CFD)
 - Quick, efficient simulation of fluid flow and heat transfer
- Heat transfer in solid (Stainless Steel, k = 16.3 W/mK)
 - Negligible transfer between pipe and barriers
- Adiabatic wall condition for outer walls
- Simulation with same input conditions
 - Comparison of output temperatures

Heat Transfer Model

- Next plots are of fluid only
 - Barrier and casing do transfer heat
- Air Velocity varies from 0.08m/s to almost 1m/s
- Exhaust velocities 0.9-1.6m/s

Models Continued

Models Continued

Heat Transfer Results

 $\frac{T_{air}^{outlet} - T_{air}^{inlet}}{T_{exhaust}^{inlet} - T_{air}^{inlet}}$

 T_{air}^{inlet}

	Air Outlet	Exhaust Outlet		
Туре	Temperature [K]	Temperature [K]	Efficiency	
No barrier	390	445	0.37	Е
1 Barrier	421	406	0.53	
2 Barriers	415	412	0.50	
3 Barriers	412	415	0.49	
4 Barriers	405	420	0.47	

Cost Analysis

Calculations						
Energy per ft ³ of natural gas	1,028	BTU				
Total Energy in a day	1,227,304,528	BTU				
Plant Usage January 2013	29,356,000	ft ³				
Price / 1,000 BTU	\$5.16					
New Heat Exchanger Uses	38,111.20	$\frac{BTU}{day}$				
Price / Day	\$196.65					
Price / Day of Steam	\$775.20					
Savings / Year	\$196,707					
Payback Period	\leq 3 years					
Max Allowable Investment	\$590,121					

Conclusion

- Natural gas burner design
- Heat exchanger with 1 barrier has best heat transfer
- Use exhaust air to run through heat exchanger
- Proposed design will process over the 200 ton constraint
- Estimated savings of \$197,000 per year
- To meet the constraint of a 3 year payback, the max allowable investment is \$590,000

References

Clint Chadwick

- Environmental Coordinator
- Nestle Purina Pet Care, Flagstaff, AZ

Chad Girvin

- Processing Maintenance Team Leader
- Nestle Purina Pet Care, Flagstaff, AZ

Buhler Aeroglide Natural Gas Dryer

- <u>http://www.aeroglide.com/snack-dryers-roasters-ovens.php</u>
- Figliola, R. S., & Donald E. Beasley. 2011, Theory and Design for Mechanical Measurements (5th ed.; Hoboken, NJ: Wiley)
- Baumeister, Theodore, & Ali M. Sadegh, & Eugene A Avallone. 2007, Marks' Standard Handbook for Mechanical Engineers (11th ed.; New York, NY: McGraw-Hill)
- White, Frank M. 2011, *Fluid Mechanics* (7th ed.; New York, NY: McGraw Hil)