Alternative Power Source for Dental Hygiene Device

Team 15

Nizar Almansouri Ningbiao Jiang Francisco Heath Jin Niu Jiaqi Xie

College of Engineering, Forestry & Natural Sciences

Contents of Presentation

- 1. Mechanical Wig-L-Bug
- 2. Wig-L-Bug Motion Analysis
- 3. Gear Ratios
- 4. Gear Forces
- 5. Material Used
- 6. Grank Handle
- 7. Gantt Chart
- 8. Conclusion

Mechanical Wig-L-Bug

- Use a hand crank as substitute for electric motor
- Hand crank speed ~ 50 RPM
- Gear ratio of 1:100

Wig-L-Bug Motion

Wig-L-Bug Motion Analysis

Uneven ring

Wig-L-Bug Motion Analysis

Force on Claw Part	76 N
Stress on Claw Part	0.34 Mpa

Gearbox Design

- Gears are compact and efficient
- Steel gears are required for 1:100 gear ratio

Gearbox Forces

Gear Load Calculations

	RPM	Z	Pitch diameter	torque (Nm)	tooth load (N)	pitch line velocity (FPM)	center dist (inch)
P1	72	72	91	20			
G1	217	24	30	7	433	69	2.40
P2	217	72	91	7			9
G2	1042	15	19	1	144	208	2.18
P3	1042	72	91	1			
G3	5000	15	19	0	30	997	2.18

Modified Lewis Calculations

	max load		pitch line
	(lbs)	max load (N)	velocity
10mm	107	475	40
.5inch	108	482	200
20mm	210	934	50
Plastic 5mm	23	101	800

Gear Forces

- High carbon steel spur gears
- 20 degree pressure angle, 20 pitch
- Plain hub (no keyway)

Attaching Gears to Shaft

GARSENG

Shaft, Gear and Pin

- Designed shaft at the machine shop
- Drill a hole through the gear
- Attach a pin

Polycarbonate

- Easy to cut
- Easy to glue
- Cheap
- Strong

Crank Handle

Specifications

Bore Dia. d (in)	1.58
Arm L. R (in)	7.29
Hub Dia. D (in)	1.85
Handle L. L(in)	3.39
Overall Ht. L1 (in)	5.28
Bore Dia. d1 (in)	0.375
Material	PA6Nylon with 30% reinforced fiber

Crank Handle

Handle Installation

- Thread the end of the shaft
- · Screw the handle on

Safety Factor

•

- Maximum allowable torque = 36 N·m
- Torque designed = 15 N·m
 - Safety factor = 2.4

Gantt Chart

	A	lask Name	3	ep su,	12	JULL	21, 12	8	INON T
			W	T	F	S	S	Μ	T
1	~	Test Wig-L-Bug							
2	 ✓ 	Generate Designs			1				
3	×	Assess Designs		6					
4	~	Design Prototype			0				
5	×	Build Prototype	13				_		
6	~	Test Prototype						_	
7	~	Explore Mechanical Wig-L-Bug							
8	~	Explore Solar Panel							
9	~	Explore Wind Turbine	13						
10	~	Explore Gas Generator	1						
11	 ✓ 	Explore Manual Generator							
12	~	Analyze Designs							
13	~	Select Mechanical Wig-L-Bug							
14		Analyze Mechanical Wig-L-Bug							
15		Draw solidworks model	13						
16		Build Mechanical Wig-L-Bug	18						

Conclusion

- Wig-L-Bug Motion Analysis
 - Convert rotational to reciprocating
- **Gearbox Design**
 - Gear

•

•

- . Shaft
- · Case
- **Crank Handle**
 - Installation
 - Safety factor

Questions?

