
[°] Automated Mirror Cover Naval Precision Optical Interferometer

Team 8 11/26/2012

Rogelio Blanco Miles Dehlin Leland Doyle Salazar Grey Katherine Hewey Paul Owen

Aerial view of the NPOI facility

Overview

- Problem Statement
- Concept Generation
- Design Considerations
- Preliminary Designs
- Final Design
- Material Selection
- Updated Gantt Chart

The NPOI

- The Naval Precision Optical Interferometer is a United States Navel Facility
- The facility uses several small siderostats to collect light from stars
- The light is then reflected down a vacuum tube where it is collected and translated into meaningful data
- This data is then used to recreate an image of a star

The Mirrors

- The mirror is made of glass coated with aluminum
- The aluminum is only a few molecules thick
- Condensation will damage the mirror's surface

Needs Identification

- The current mirror cover system is awkward and hazardous
- Possibility for damage to sensitive equipment exists
- Physical labor is required to make the current system work
- Time requirements are an issue as the facility increases in size

Problem Statement

 Automatic mirror cover is needed at NPOI and must operate without interfering with current equipment while maintaining a nitrogen purge.

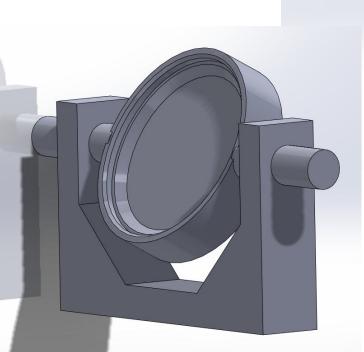
Current System

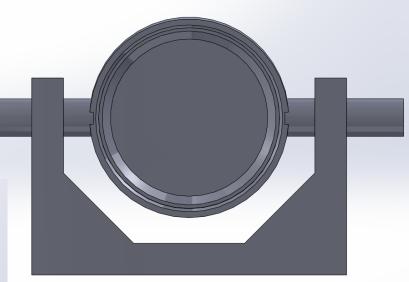
Operational telescope and Siderstat

Manual Covers

Siderostat with Current Cover Attached

Constraints


- Must not block star light from siderostat
- Full range of motion of siderostat must be maintained
 - Tilt: -10 to 60 degrees
 - Pan: -60 to 60 degrees
- The cover must be able to close in the event of a power outage



- Material issues
- Environmental issues
 - Wind
- Clearance issues,
 - The cover must operate when the dome is open or closed
 - 4 inches below mirror
 - $\frac{1}{2}$ inch when tilted
 - I0 inches above mirror

Siderostat Model

Front View of Siderostat

Isometric View of Siderostat

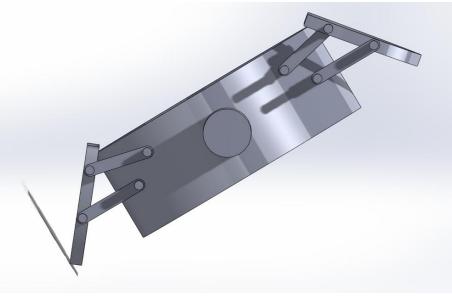
Test Environment

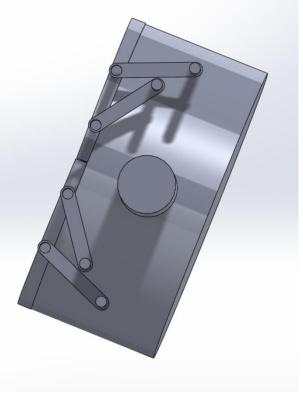
• Equipment:

- Scale model of the siderostat with identical functionality.
- Tank of compressed Nitrogen
- Temperature range (-20F to 100F)
 - A foam cooler and dry ice
 - A foam cooler and a heat source
- Interruptible power source
 - Power outlet

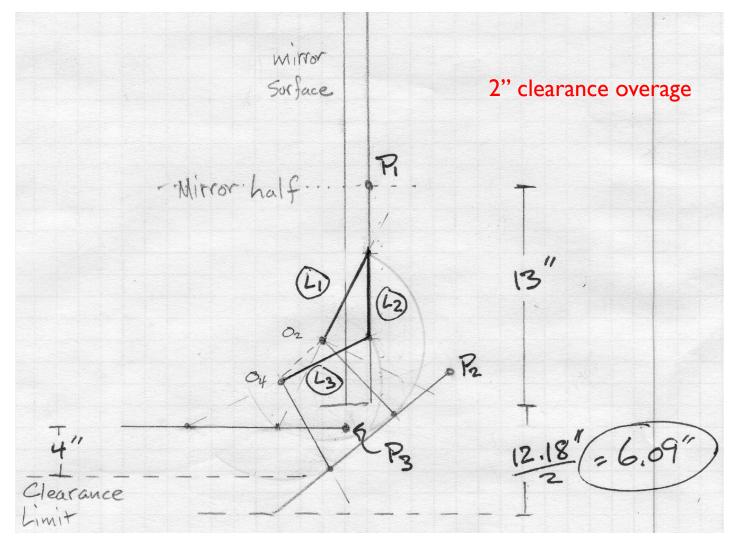
Concept Generation


- Current System
 - Solid Piece of Lexan
 - Rubber Stopper


Rubber Stopper Used to Hold Mirror Cover


Jim Clark Holding the Current Mirror Cover

Four Link Design



Cover Open

Cover Closed

Four Link Clearance

Client Suggestions

Blinds

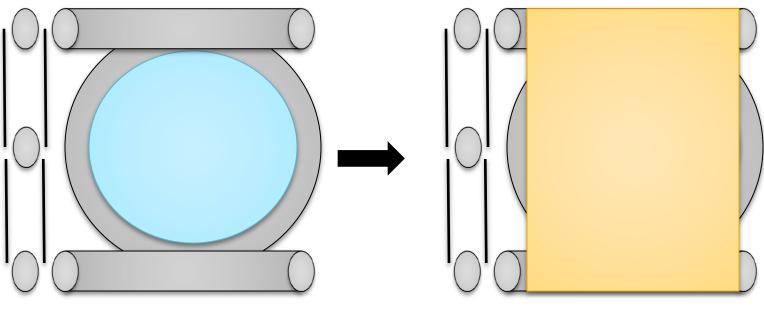
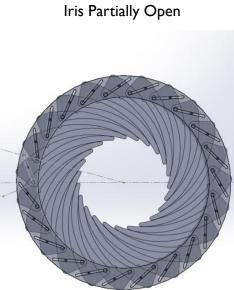
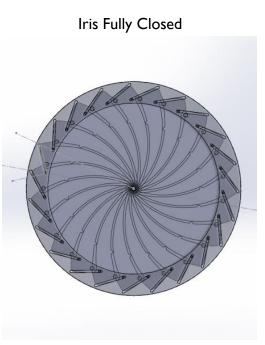


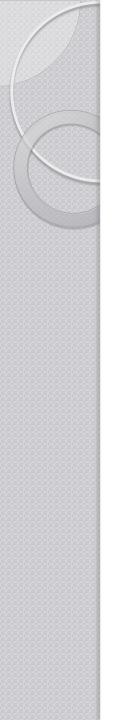
Figure I – Blinds open

Figure 2 – Blinds closed

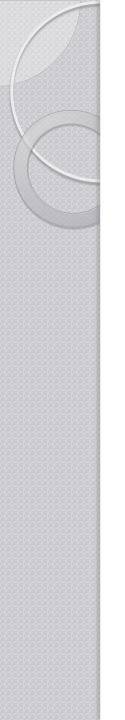

Design Discussion


- Advantages
 - Simple
 - Inexpensive
- Drawbacks
 - Wind
 - Nitrogen Purge and Seal
 - Lifespan
 - Mounting Locations
 - Clearance




Iris Design

Iris Fully Open



Iris Discussion

- Advantages
 - Elegant design
 - Minimal cross section exposed to wind
 - Well balanced
 - Rigid components
- Drawbacks
 - Complex
 - Redesigned to address clearance issues

Materials Selection

- Top and bottom rings must have similar thermal expansion to the cast aluminum mirror cell
- Plate Aluminum will be machined to the required geometry for the rings

Materials Selection

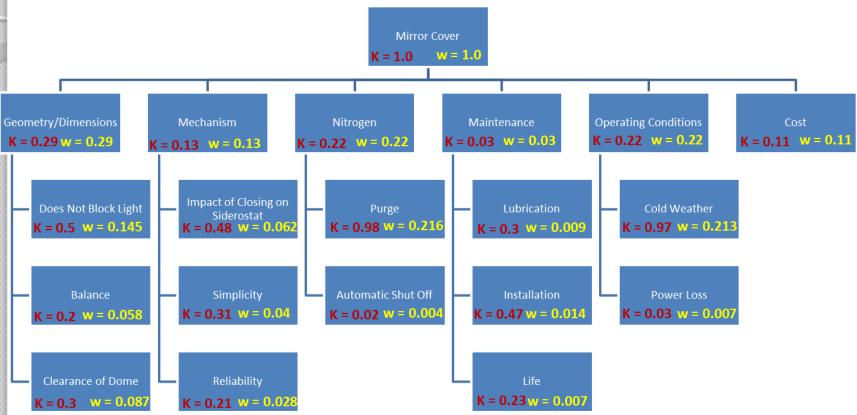
- Iris blades
 - Low coefficient of friction
 - Low thermal expansion
 - High tensile strength
 - Low density
 - Inexpensive
- Polyoxymethylene "<u>Delrin</u>"

Gannt chart

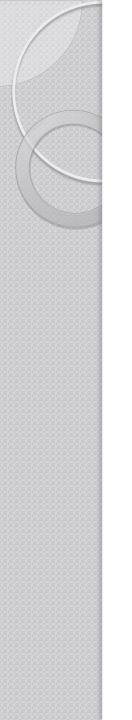
	D. I.I.	0	Provide Land	0	12		Oct 2	9, '12		No	VE 110	ŝ.		Mer	12, 1	1		N	ov 19	110		Mau	26, '	10		De	c 3, ':	2
Task Name 👻	Duration 💂	Start 🔻	Finish 🚽	Pr	12 T	S	M	W	F	S	v 5, '12 T	T	S	M		_	E	S	T	T	S	M	20, W		F	S	сэ, . Т	2
+ Project Assesment and Identification	8 days?	Thu 9/27/12	Tue 10/9/12							-																		
Design and Testing	24 days	Sat 10/13/12	Thu 11/15/12		-	-	-				-	-	-	-		V												
Prototype Analysis	24 days	Tue 10/30/12	Fri 11/30/12							_		-	-	-		_	_	_	_	_	-	-	_	=	V			
Solid Works model	3 days	Fri 11/2/12	Tue 11/6/12	14					_																			
Materials Selection	3 days	Tue 10/30/12	Thu 11/1/12																									
Presentation: Engineering Analysis	0 days	Tue 11/6/12	Tue 11/6/12							4	11/6	Ē.																
Report: Engineering Analysis	0 days	Fri 11/9/12	Fri 11/9/12									\$ 1	1/9															
Redesign of Analyzed components	5 days	Fri 11/2/12	Thu 11/8/12					ŧ			_	7																
Concept Finalization	16 days	Fri 11/9/12	Fri 11/30/12	21								È	-	_							-	-	_					
Presentation: Final Design	0 days	Tue 11/27/12	Tue 11/27/12																			\$	11/	27				
Report: Final Design	0 days	Fri 11/30/12	Fri 11/30/12																					٩	11/3	30		
	a (1945) (1975) (1976)		horized and on the second second second																						3			

Questions?

Quality Function Diagram


0

Engineer							ring Requirements								
		Yield Strength	Young's Modulus	Moment of Inertia	Weight	Cost	Thermal Expansion	Dimensions	Power						
ts	Durability	х	х			х									
en	Inexpensive	x	x		х	х									
Ę	Protect mirror from the elements	x						х							
lire	Maintain nitrogen purge							х	x						
Client Requirements	Mitigate need for human interaction								x						
	Low weight	x	х	х	х	х									
	Does not interfere with star light							х							
	Maintain range of swivel of siderostat			х				х							
0	Withstand Temperatures (-20F TO 100F)						х								
	Units	psi	psi	in ⁴	lb	\$	in/in *F	in	Volt						


incoving De

Weighting Factors

Criteria Tree With Weighted Factors

Decision Matrix

Criteria	Design Options										
Criteria	Pneumatic Roller	Two Piece Four Link	Inflatable	Worm Gear							
Doesn't Block Light	6	9	9	8							
Balance	8	8	7	6							
Clearance	5	4	9	2							
Impact	6	8	9	8							
Simplicity	4	8	4	8							
Reliability	5	5	6	7							
Purge	3	7	3	7							
Auto Shut Off	7	7	9	7							
Lubrication	3	3	7	2							
Installation	2	5	7	8							
Life	8	6	2	7							
Cold Weather	5	5	3	5							
Power Loss	6	6	9	4							
Cost	5	8	5	8							
Total	73	89	89	87							
Weighted Total	4.885	6.739	5.491	6.386							

Top Four Concepts Shown in Weighted Matrix