[°] Automated Mirror Cover Naval Precision Optical Interferometer

4/26/2013

Rogelio Blanco Miles Dehlin Leland Doyle Salazar Grey Katherine Hewey Paul Owen

Overview

- Introduce NPOI
- Problem Statement
- Constraints
- Iris Mechanism
 - Prototypes
- Fabrication Process
- Project Deliverables

The Naval Precision Optical Interferometer (NPOI)

The facility uses several small mirrors to collect light from stars

Combining the collected light allows for a composite image to be assembled

The composite image replicates the resolution of a much larger single mirror telescope

NPOI Facility

Aerial view of the NPOI facility

The Siderostat

- The small mirrors are housed by multiaxis siderostats
 - Movement of a siderostat is computer controlled to track an object star
- The light wave-front is directed through large vacuum tubes
 - This data is then used to recreate the composite image of a star

Siderostat

Front view of siderostat

Side view of siderostat

The Mirrors

- Mirrors are approximately 22 inches in diameter
- The mirrors are made of glass coated with reflective aluminum

Current Mirror Cover

When the mirrors are not in use they are protected by a Lexan cover with nitrogen purge

Siderostat with Current Cover being removed

Current System

Operational telescope and Siderostat

Problem Statement

An automatic mirror cover is needed at NPOI and must operate without interfering with current equipment while maintaining a nitrogen purge.

Constraints

- The cover must not block any light from the mirror surface
- The cover must be able to open and close manually

The siderostats are outside so the cover must be able to operate in the temperature range of -40°C to 40°C

Constraints

- The full range of motion of the siderostat must be maintained
 - \succ vertical tilt from -10° to 60°
 - \succ horizontal pan of -60° to 60°
 - > Top clearance of 10 inches
 - Bottom clearance of 4 inches

Constraints

- Any cover cannot use grease or lubricants
- If a polymer is used, it must be UV stabilized and it must be hydrophobic
- The prototype cannot cost more than \$500

Iris Diaphragm

Initial Iris Mechanism

16

Iterative Design Process

- > Our first prototype highlighted problem
 - Friction between rotating rings
 - Friction/binding of connecting pins
 - Critical tolerances hard to control
 - Unacceptable gaps
- Constraints were not met because lubrication was necessary for this

Improved Prototype

The second design utilizes a long curved blade design that greatly reduced the friction between the blades and the rings.

Improved Prototype

 Used ball bearings to reduce friction between the rings.

Final Prototype

Final Prototype

Features

Constrained actuation ring

- Mounting tab
- >Improved drive mechanism
- Constructed as a preassembled unit for ease of installation

The Final Prototype

CNC Fabrication

В	ud	g	et
		0	

Development			
Small Parts		\$ 40.00	
Shop Hours	\$40*10hours	\$ 400.00 (pro-bond	o)
Materials		\$ 27.64	
Final Prototype			
Small Parts		\$ 100.00	
Shop Hours	\$40*20hours	\$ 800.00 (pro-bond	o)
Materials		\$ 8.38	
		\$27.64	
		\$ 36.02	
Total		\$1,439.68	
		\$1,200.00 (pro-bond	o)
Cost		\$ 239.68	
Under Budget		\$ 260.32	

Deliverables

Fully automated 8 inch diameter scale prototype

Deliverables

To ensure the mirror covers are manufactured correctly all drawing submitted with the final report included appropriate tolerances and material certifications.

Conclusion

- The team was able to develop and fabricate a small scale prototype for NPOI
- It does not interfere with the current equipment and start light
- It took multiple iterations of the first design to meet all of our sponsors constraints

Questions?