

Origami Spyglass for Economic and Educational Advancement in Lesoit, Tanzania

Mosab Alfailakawi, Mohammad Alzaid,Badah Badah, Dwayne Codding and Dominic McGonegal EGR 476c 04/30/16

Outline

- Design Challenge
- Community Background
- Product Designs Process
- Cost and Risk Analysis
- Future Milestones
- Acknowledgements
- References

Clients and Stakeholders

Figure 1: Maasai Woman and young girl [1]

Figure 2: School Children [2]

Figure 3: NAU Engineering Building in Flagstaff, AZ [3]

Product Considerations

• Design affordable academic tools to reduce dropout rates and promote STEM education in rural schools.

• Design a business model that improves the income of the community while tailoring local jobs to the cultural life of Maasai women.

Local Economics

Tourism

- Revenue increase of approx. 27.5 million US dollars over 5 years [4]
- Visitors increase of approx. 122% over 5 years [5]

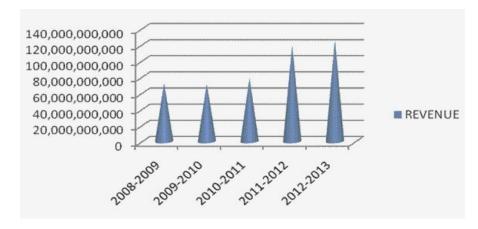


Figure 4: Yearly Tourism Revenue in Tanzania (2008-2012) [4]

Table 1: Tanzania Visitor Population Increase (2008 - 2012) [5]

S/N	YEAR	TOTAL NUMBER OF VISTORS
1	2008-2009	736,829
2	2009-2010	679,006
3	2010-2011	682,218
4	2011-2012	942,664
5	2012-2013	901,892

Current Education

- Drop-out rates [6][7]
- Current Science Lab Programs
 - Biology
 - Chemistry
 - Physics
- Mentorship and job shadowing[8]

Figure 5: Travel for education [9]

Product Description

- Origami Spyglass
 - Based on Foldscope
- Wildlife Educational Booklet
 - Coupled with Classroom Lesson Plan
- Tourism Booklet

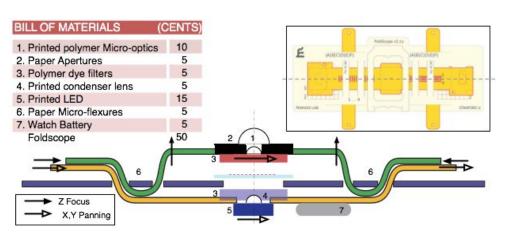


Figure 6: Foldscope Cross-Sectional Diagram of Design + Bill of Materials [10]

Product Description: Spyglass Design Criteria

The spyglass must be designed to:

- Be constructed from single sheet of paper
- Minimize or eliminate the use of adhesives
- Maximize the rigidity of the housing
- Provide simple assembly for young students
- Maximize product lifetime (Durability)

Figure 7: basic spyglass [11]

Lens Design: Theory

- Galilean telescope
 - Simple construction
 - Two lenses (concave and convex)

Table 2: Important Design Values

Lens Properties	Current values
Material Refractive Index (n)	1.514 [15]
Length of Spyglass (L)	15 cm (chosen)
Magnification (M)	10x (chosen)
Objective Lens Focal Length (Fo)	16.67 cm
Eyepiece Lens Focal Length (Fe)	-1.67 cm

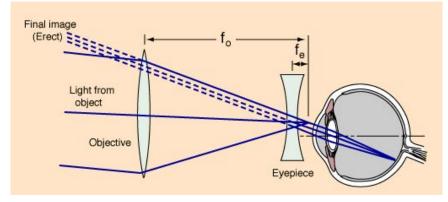


Figure 8: Galilean telescope [12]

$$\frac{1}{f} = (n-1)(\frac{1}{r_1} - \frac{1}{r_2})$$

$$L = f_o + f_e$$

$$M = -\frac{f_o}{fe}$$
 [13,14]

Lens Design: Manufacturing

Photopolymer 3D Printing

- FormLabs Form 1+ Printer
 - Prints using lasers instead of a filament
 - Allows for the printing of clear, acrylic resins
- Lens Printing Demonstration
 - Printing method allows for usable final product with minimal post processing

Figure 9: FormLabs Form 1+ 3D Printer [16]

Figure 10: Lens Printing Demonstration of the Form 1+ 3D Printer [16]

Housing Design

- Four initial design ideas:
 - o Cylindrical, accordion, square cross-section, and 'Tri-Hex' cross-section
- Digital models created for each concept
- Concepts chosen for assembly prototyping:

Figure 11: Square Cross-Section 3D Model

Figure 12: Tri-Hex Cross-Section 3D Model

Housing Design: Assembly Prototyping

Housing Assemblies:

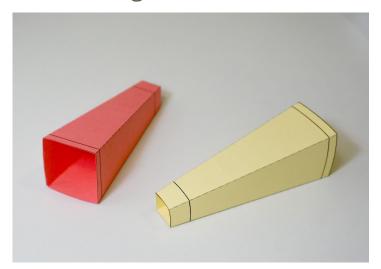


Figure 13: Square Cross-Section Prototype

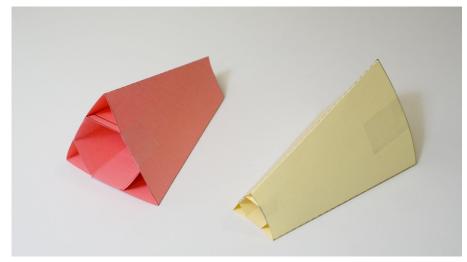


Figure 14: Tri-Hex Cross-Section Prototype

Housing Design: Assembly Prototyping

• Fastening Methods:

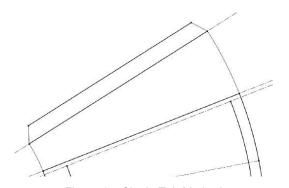


Figure 15: Single Tab Method

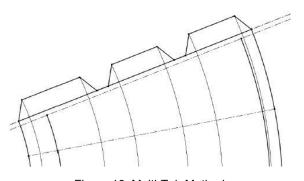


Figure 16: Multi-Tab Method

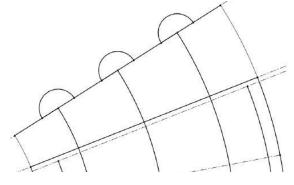


Figure 17: Hook-Tab Method

Housing Design: Final Recommendation

- The Tri-Hex design is the most promising
 - Rigid triangular structure
 - Compatibility for lens attachment
 - No adhesives required for construction
 - Simple assembly

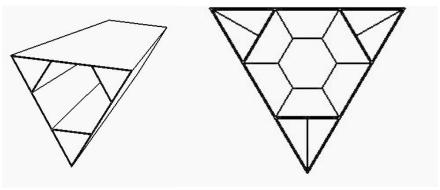


Figure 18: Tri-Hex Design CAD Drawings

Housing Design: Alternative Considerations

- Internal Truss Reinforcements
 - Paper or Plastic
- Limit Adhesive use
- Lens Attachment

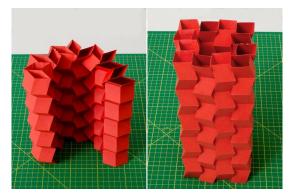


Figure 19: Zippered tubes design offers collapsible structures with large assembly time. [18]

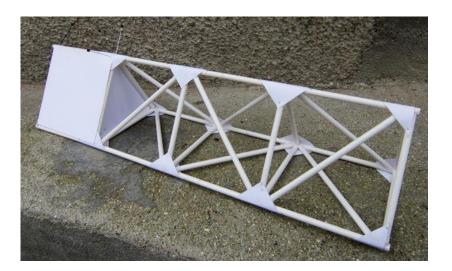


Figure 20:Truss model made from rolled paper. [17]

Housing Design: Manufacturing

- Glowforge Laser cutting printer [19]
 - Materials (cuts and engraves):
 - Paper, Wood, Leather, Cardboard, Rubber, and more.

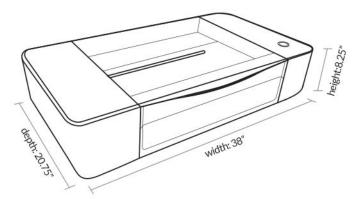


Figure 21: Contrast acrylic street map with location was made with the printer [19]

Housing Design: Testing

- Bending Truss Load Test
- Twisting Applying Torque at Ends
- Compression Axially and Radially
- "Element Testing" Sweat, Water, and other impacts on the product.

Figure 22: Simple load test typically used for bridge design. [20]

Current Cost Breakdown

Table 3: Initial Investment and Recurring Material Costs[16],[19].

CAPITAL COSTS	Unit Cost	Quantity	Total Costs		
Glowforge Basic	\$2,395.00	1	\$2,395.00		
Form 1+	\$2,799.00	1	\$2,799.00		
RECURRING COSTS (MONTHLY)					
Rental Workspace	\$500.00	N/A	\$500.00		
Equipment Maintenance	\$100.00	1	\$100.00		
Photopolymer Resin	\$149.00	2	\$298.00		
Reams of Paper	\$18.29	4	\$73.16		
	\$5,732.45				
TOTAL REC	\$971.16				

Risk management

- Manufacturing Equipment
 - Theft
 - Damage
- Community Investment
 - Education and Economic Applications
 - Manufacturing Labor
- Transparency
 - Accounting and Business Management

Figure 23:Risk Management [21].

Future Milestones:

Product Development

Design Outreach Design Calculations

Prototype Testing

Final Product

Business, Education, Graphic Design

DeMiguel Testing Lens Properti<u>es</u> Structural Properties

Mechanical

Element Testing Booklet and Spyglass

Lesson Plan

Business Model

Future Milestones:

Table 4: Important deadlines for next semester

Task	Duration (days)	Completion date	
Business, Education, Graphic Design	6	August 30 th	
DeMigual Testing (Housing)	5	September 5 th	
Mechanical Test	3	September 23rd	
Element Testing	3	September 26 th	
DeMigual Testing (Product)	5	October 3 rd	
Lens Properties	30	October 4 th	
Business Model	14	November 28 th	
Lesson Plan	14	November 30 th	
Booklet and Spyglass	56	November 30 th	

Acknowledgements

- Dr. Dianne McDonnell
- Ashwija Korenda
- Evalyne Long'arwa
- Dr. Christopher Mann
- Todd Rossman
- Jon Helleson
- Sharna Beahm
- Kristin Whitten

Questions?

References

- [1] "Lesoit Medias," imgrum. [Online]. Available at: http://www.imgrum.net/tag/lesoit. [Accessed: 24-Apr-2016].
- [2] "My Visit To Esa School in Arusha, Tanzania," Dont Stop Living, 2013. [Online]. Available at:
- http://dontstopliving.net/my-visit-to-esa-school-in-arusha-tanzania/. [Accessed: 24-Apr-2016].
- [3] "Photo Gallery," RSS. [Online]. Available at: https://www2.nau.edu/mktpg-p/gallery/details.php?image_id=2292. [Accessed: 24-Apr-2016].
- [4] The Earth Safari, "Tanzania Safari Tours with Serengeti Safari", 2014. [Online]. Available:
- http://www.theearthsafari.com/blog/tanzania-safari-tours-serengeti-safari/. [Accessed: 28- Feb- 2016].
- [5] Tanzaniaparks, "The official site of the Tanzania National Parks Corporate Information", 2016. [Online]. Available:
- http://www.tanzaniaparks.com/corporate_information.html. [Accessed: 29- Feb- 2016].
- [6] A. S. Ngodu, "Alarming Drop-out Rate, NatComReport," Natcom Report. [Online]. Available at:
- http://www.natcomreport.com/tanzania/pdf-new/alarming.pdf. [Accessed: Feb-2016].
- [7] "UNICEF Annual Report 2014," UNICEF.org. [Online]. Available at:
- http://www.unicef.org/about/annualreport/files/tanzania_(united_republic_of)_annual_report_2014.pdf. [Accessed: Feb-2016].
- [8] M. Cordoba, "Changing girls attitudes towards STEM using PBL and technology: A research based professional resource guide for educators,", Master of Arts in Education, Elementary Education, California State University, Northridge, 2015.
- [9] Guardian News and Media Limited, "BAE payment to Tanzania undermines justice and accountability," 2012 [online].
- Available:www.theguardian.com/global-development/poverty-matters/2012/mar/20/bae-payment-tanzania-justice-accountability. [Accessed: 12-Mar-2016].
- [10] "Origami-inspired "zippered tubes" create super strong structures that fold down flat," Inhabitat Green Design Innovation Architecture Green Building.
- [Online]. Available at: http://inhabitat.com/origami-inspired-zippered-tubes-create-super-strong-structures-that-fold-down-flat/. [Accessed: 26-Apr-2016].
- [11]"Business Coaching/Mastermind « SBSW Companies", Sbswcompanies.com, 2016. [Online]. Available: http://www.sbswcompanies.com/master-mind/. [Accessed: 30- Apr- 2016].

References

[12]"Refractive Telescopes", Hyperphysics.phy-astr.gsu.edu, 2016. [Online]. Available: http://hyperphysics.phy-astr.gsu.edu/hbase/geoopt/teles.html. [Accessed: 24- Apr- 2016].

[13]"Telescope Equations", Rocketmime.com, 2016. [Online]. Available: http://www.rocketmime.com/astronomy/Telescope/telescope_eqn.html#Intro. [Accessed: 28- Apr- 2016].

[14]"Radii of curvature for lenses", YouTube, 2016. [Online]. Available: https://www.youtube.com/watch?v=vSOdNf0Oh-Q. [Accessed: 28- Apr- 2016]. [15]"Somos® WaterShed XC 11122", Somos, 2015. [Online]. Available:

http://www.dsm.com/content/dam/dsm/somos/en_US/documents/Brand-Status-Sell-Sheets/English-Letter/Somos%20WaterShed%20XC%2011122%20SS-PD S%20Letter.pdf. [Accessed: 28- Apr- 2016]. [Accessed: 24- Apr- 2016].

[16] Formlabs. "Printing Lenses on the Form 1+." 2016. [Online]. Available: http://formlabs.com/stories/lenses-3D-printed-formlabs/ [Feb, 18, 2016].

[17] "Watch live! Crack LOHAN team to send SPEARS to stratosphere," • The Register. [Online]. Available at:

http://www.theregister.co.uk/2012/11/30/lohan_test_flight/. [Accessed: 26-Apr-2016].

[18] "Origami-inspired "zippered tubes" create super strong structures that fold down flat," Inhabitat Green Design Innovation Architecture Green Building. [Online]. Available at: http://inhabitat.com/origami-inspired-zippered-tubes-create-super-strong-structures-that-fold-down-flat/. [Accessed: 26-Apr-2016].

[19] Glowforge - the 3D Laser Printer, "Glowforge - the 3D laser printer", 2016. [Online]. Available: https://glowforge.com/. [Accessed: 28- Feb- 2016].

[20] "How to Test Your Model Bridge," Garrett's Bridges ». [Online]. Available at: http://www.garrettsbridges.com/testing/how-to-test-your-model-bridge/. [Accessed: 26-Apr-2016].

[21]"Risk Management - Allied", Allied, 2016. [Online]. Available: http://coemployer.com/risk-management/. [Accessed: 24- Apr- 2016].