

instru-MEN-tation

April 15, 2022

Ibrahim Aljarbou

Yaqoub Abdulkarim

Project introduction:

Dr. Chun-Hsing Ho:

Associate Professor in Civil Engineering, Construction Management, and Environmental Engineering.

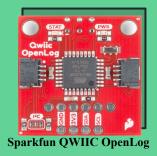
Motivation:

- Detect Obstacles on the bike trail
- Help the bikers know the location of each obstacle to avoid it
- Making biking safer by making an app that is accessible to everyone

Dr. Kyle Winfree

Associate Director for Undergraduate Programs, School of Informatics, Computing, and Cyber Systems.

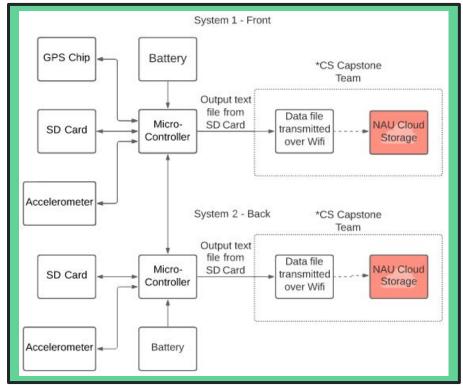
Most important requirements:


- GPS sampling frequency at least 1 Hz.
- Accelerometer sampling frequency at least 100 Hz.
- It needs at least 3 hours battery life to collect data.
- At least 100MB of memory to store multiple trips.
- Must be able to locate other obstacles in the trail.

Ibrahim

Prototypes:

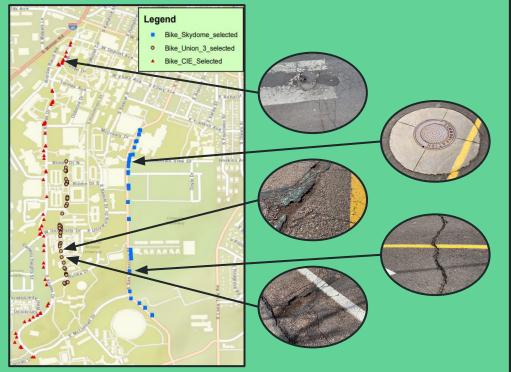
- OpenLog
 - Old openlog with no QWIIC connection but exact same
 - Print out simple text file to ensure data flows to MicroSD card
- GPS
 - Record lat and long data from satellite
- Accelerometer
 - Obtain X, Y, Z output and tested X axis


System Architecture:

System 1 - Front:

- GPS
- SD Card
- Accelerometer
- Battery

System 2 - Back:


- SD Card
- Accelerometer
- Battery

Testing Results:

Bike trails tested:

- **Red triangles:** From *W. A. Franke College of Business* building to *Center for International Education* building
- Yellow dots: From Skyview Apartments to University Union.
- Blue squares: From *Skydome* to *Health and Learning Center*

Analysis of Results:

Raw data output:

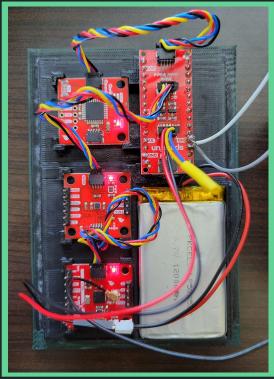
Every 1 second: time (in ms), latitude, longitude, date, and time

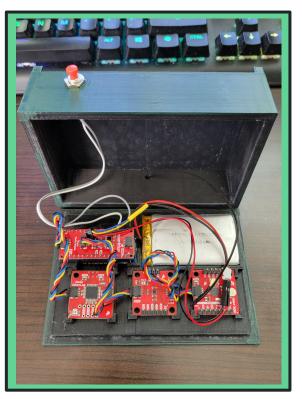
37300, 35.18880, -111.65507, 2022-3-23-13-32-41				
374171,	35.18878	, -111.65	507, 🤶	
374192,	-0.1196,	-0.0605,	1.0287	
374221,	-0.1213,	-0.0595,	0.5916	Sudden change in the z value indicates that there
374244,	-0.0914,	-0.0798,	1.0046	is a hole at this location
374267,	-0.0662,	-0.1233,	1.0239	

Every ~0.1 seconds: time (in ms), x, y, and z values

A sudden change in a z value indicates that there is an obstacle in the latest printed GPS coordinates.

A gradual change in an x value indicates that the bike is on an incline or decline


Ibrahim


Summary of Technical challenges:

- Missing Characters: Inability to change the baud rate of the Arduino (due to using I²C communication) caused missing characters in the output data file, as the OpenLog was running slower than the accelerometer.
- Using two accelerometers: The Arduino was only reading one accelerometer. And changing addresses did not resolve the issue.
- Using a second subsystem on the back of the bike: was impractical, challenging to implement, and caused more trouble than it was worth.
- Using NAU WiFi: was impossible to connect the Arduino to the NAU WiFi due to the two-step verification.
- System container: 3D-printing, warping due to temperature fluctuations

Final Product Pictures:

Ibrahim

Conclusion:

Although the important requirements were satisfied, we feel that the project could have been done in a more practical way such as developing it in a smartphone app. Nonetheless, this was a very valuable experience and the team has learned a great deal from this project, as it introduced us to real-world problems and challenged the team to think creatively and effectively throughout the entire project.

Thank You for Listening

Any Questions?