
Skeyes Structural Inspection Drone
Noah Levie, Daniel Copley, Mohammed Almershed

Abstract

[1] C. Wang, A. Bochkovskiy and H. Liao, "Scaled-YOLOv4: Scaling Cross 

Stage Partial Network", arXiv.org, 2021. [Online]. Available: 

https://arxiv.org/abs/2011.08036. [Accessed: 10- Feb- 2021].

[2] Wotherspoon, J (2020) YOLOv4-Cloud-Tutorial [YOLOv4-Cloud-

Tutorial]. https://github.com/theAIGuysCode/YOLOv4-Cloud-Tutorial

Thank you to Dr. Abolfazl Razi, our client, who has mentored and pushed us in 

creating an innovative, compelling, and enriching project to encapsulate our 

engineering careers at NAU.

Thank you to Han Peng, our Graduate Teaching Assistant, who has guided us 

and helped us maintain a steady course throughout our capstone process.

Building inspection, especially in the case of taller or not easily-

accessible buildings, is a mundane task made slow, costly, and at times

dangerous by the limitations of the human form. Team Skeyes has created a

system which performs an inspection of a structure and detects potentially

faulty or noteworthy features with minimal oversight and input from the user.

This structural monitoring drone, equipped with a GoPro camera,

uses custom-trained object recognition and image classification networks to

identify regions of concern on the building. The video taken by the video

camera is wirelessly transmitted to a ground control station – a laptop operated

by the user. This ground control station uses the QGroundControl software to

display the drone’s telemetric data, determine flight paths and issue

commands, and display the drone’s view with structural features designated by

boxes. A two-stage detection system using the You Only Look Once v4

(YOLOv4) object recognition system and custom TensorFlow convolutional

neural networks (CNNs) processes the live video feed of the drone and

requests input from the user according to whether the feature is deemed faulty

or nominal. This system allows the user to perform a comprehensive structural

inspection without receiving extensive training or endangering themselves in

their field of work.

• Drone Kit: Using the HolyBro S500 kit with the PixHawk 4 flight 

controller, we can accurately and reliably control the drone and send 

mission flight commands via MAVLink

• Ground Control Software: We are using QGroundControl to interface 

between the user and the flight controller, in order to monitor the flight 

and data, as well as allow the user to provide inputs

• Visual Damage Classifier: Using TensorFlow and OpenCV, several 

open-source Python libraries, we use custom-built and custom-trained 

classifiers to determine whether a feature is faulty or nominal

• Object Recognition System: The open-source, high-level object 

recognition system, You Only Look Once v4 (YOLOv4), can be 

optimized and custom-trained in the cloud to identify and crop features 

of images in real time.

• YOLOv4 Mean Average Precision (mAP): 78.85%

• Window Detection Avg. Precision: 83.68%

• Gutter Detection Avg. Precision: 74.02%

• CNN Avg. Precision: 

• Window Classifier: 70.73%

• Gutter Classifier: 73.23%

• CNN Optimized Configuration:

• Window:

• 3 Convolutional Layers

• 2 Dense Layers

• 32 nodes per layer

• Gutter:

• 3 Convolutional Layers

• 0 Dense Layers

• 128 nodes per layer

• Display delay: 1.0 sec – 1.4 sec

1.1* The drone must be operable using a graphical user interface

2.1* The drone will use image processing in order to isolate and identify 

features relevant to the operator, which should be at least 80% accurate

2.2.1* Each YOLOv4 feature should be recognizable with at least 90% 

accuracy

2.3.1* The damage classifiers should be at least 90% accurate in 

distinguishing between faulty and intact features

2.4* Feature detection within the video feed will trigger appropriate 

commands to be sent via MAVLink

Figure 1: General System Architecture Figure 2: Software System Architecture

Requirements

Results

Acknowledgements

Design Components

Conclusion

References
Figure 3: Drone Frontal View Figure 4: Drone Profile View

Figure 5: Sample Feature Detection Output

Figure 6: Gutter CNN 

Validation Epoch Accuracy

Figure 7: Gutter CNN 

Validation Epoch Loss

Ultimately, our device performed below standards, as far as the

identification accuracy and latency thresholds are concerned. The overall

implementation worked perfectly well, as did the general flow of image data

since the high-level wrapper code ensures that all the inputs and outputs are

normalized and in the proper format. The video input stream, YOLO output

cropping function, feature isolation and image filtering, annotated display, and

action generation all work completely nominally. We were able to store and

implement the YOLO and TensorFlow models and weights files and retrain

them as needed without having to change the wrapper code. We had hoped to

achieve at least an 80% overall precision, which we were unable to do with

such limited datasets; however, we were able to get close enough to create a

functioning system, regardless of accuracy or correctness.

One of the biggest challenges for this project was developing the

machine learning models. We gathered our own dataset utilizing a mix of

images gathered around flagstaff as well as the internet. Finding high quality

images of broken or damaged items was very difficult. In the future, the

dataset is the area primarily in need of improvement. Doing so would vastly

improve the quality of our object detection and image classification, and

furthermore the performance of the entire system.

Quad Copter Ground Control

Blue: Most computationally intense and latent

Yellow: Potential safety concern

Red: Safety critical

https://github.com/theAIGuysCode/YOLOv4-Cloud-Tutorial

