
Jumping Jacks

Final Report and User’s Manual
April 16, 2021

Kristin Hamman: kah635@nau.edu
Richard Hutchinson: rdh258@nau.edu

Yuhau Wei: yw249@nau.edu
Elizabeth Zyriek: eaz34@nau.edu

1

mailto:kah635@nau.edu
mailto:rdh258@nau.edu
mailto:yw249@nau.edu
mailto:eaz34@nau.edu

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

Table of Contents
Page

Title Page 1
Table of Contents 2
Introduction 3

Background of Client 3
Problem Being Solved 3

Design Process 5
Process Description 5
Functional Decomposition 5
Prototype Findings 8

Final Design 12
System Architecture 12
Component Explanations 15

Results 17
Results Spreadsheet 17
Important Test Results 17
Analysis of Results 18

Conclusion 20
Requirements Results 20
Lessons Learned 22

User Manual 24
Introduction 24
Installation 26
Configuration and Use 27
Maintenance 27
Troubleshooting Operation 28
Conclusion 28

Appendix 29
Appendix A 29
Appendix B 30
Appendix C 32
Appendix D 34

2

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

3. Introduction

a. Background of your client

The client for the Gas Reactor Project is Christopher Ebert and the Schuur Lab. The
Schuur Lab is a research lab focused on the interactions between terrestrial ecosystems
and global exchange, the exchange of carbon plants, soils, and the atmosphere,
understanding the response of terrestrial ecosystems to changes in climate and
disturbance regimes, responses of arctic ecosystems to climate change, and radiocarbon
dating. The project focuses on making the Isotope Sample Preparation Lab more power
efficient and up to date in terms of electronics. The project outline was to enhance,
automate, and make a pressure and temperature monitoring system that the client uses to
work on carbon samples to create needed isotopes. The client expressed issues of the old
system which were: old parts being discontinued, old power supplies coming to an end,
and the need for manual control throughout the process. The automation of the sampling
process would help the client indefinitely as the reaction can take anywhere from 2-5
hours and has to be manually turned off using the current system. With the proposed
solution this process would happen on its own after the pressure starts to level out for a
prolonged period of time. Although, having a pressure and temperature system work
together is not uncommon; the niche aspect comes in with the magnitude the pressure and
temperature systems have to be able to read and reach. The carbon samples will have to
be heated up anywhere from 600 to 900 degrees Celsius. The need for this is due to
carbon's ability to withstand extreme temperatures and turn into three usable isotopes for
analysis. With the ever growing issue of climate change the balance of carbon becomes
more important because the imbalance of carbon on earth and in the atmosphere can
cause issues such as global warming and climate disruption. This is the main reason the
client needs to come up with a new system before the old one is not usable anymore. The
Schuur Lab’s Assistant Director, Mr. Ebert, works on these carbon isotope samples to use
for analysis after the reactions occur in small test tubes.

b. The problem being solved

The focus of this project is to create a new set of ovens to work in the Schuur Lab. The
pieces used in the current set are out of date and require updating, so this new system is
built around keeping the Schuur lab running without the need to replace equipment. This
project will be used to help monitor and change temperatures for different carbon
reactions, where the user can observe and directly change the temperature of the different
ovens in the lab. We are updating the heaters used in the lab to increase the temperature

3

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

of a carbon reaction by using a proportional (P), integral (I), derivative (D) (PID)
temperature controller that works in conjunction with a pressure system. The project
would be able to read the pressure of 13 samples, 12 arranged by the client and a
reference pressure. The project then uses the PID temperature controller to reach a
desired “setpoint” chosen by the user and left alone while the reactions go to completion.
The goal is to have an Arduino microcontroller get inputs from the pressure and heating
sensors attached to the vacuum chamber where the reaction occurs. The values from these
sensors will then be displayed on a Liquid-Crystal Display (LCD) screen. Our sensors
will be used for different aspects, such as temperature measurement, precision
adjustment, information transmission, and data display. A user input will be needed to set
the temperature, which is also displayed on the LCD screen. The pressure sensor will be
used to monitor the reaction and determine whether the heating block should be on or off
based on its readings. Thus, this Gas Reactor Project will allow for samples to be
properly made and tracked by our PID temperature controller and pressure system.

4

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

4. Design Process

A. Overall design process description

The following Figure 1 shows the system architecture at Level 1. The important
requirements that our team identified for this project in relation to the architecture are
listed below.

Figure 1: System Architecture- Level 1

● The Arduino microcontroller will get inputs from the pressure and heating sensor that
are attached to the vacuum chamber where the reaction occurs.

● The values from the pressure and temperature sensor are then displayed on an LCD
screen for easy viewing.

● A user input will be needed for the “set temperature” which is also displayed on the
LCD screen.

● The pressure sensor is used to monitor the reaction and determine whether the heating
block should be on or off based on its readings.

● Store the stop time of the reaction and print it on the LCD screen.

B. Functional decomposition

The following figures and explanations detail the Subsystem Architecture for Level 2.

5

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

The first subsystem is for the input. In this subsystem, the user will set the temperature
between 550-950 degrees Celsius with push buttons. The set temperature value will then
be sent to the PID Controller.

Figure 2: System Architecture (Level 2) for Input

The second subsystem is for the display. In this subsystem, the PID Controller will have
the actual temperature, set temperature, and pressure values and the stop time. This
information will be sent to the LCD screen to be displayed.

6

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

Figure 3: System Architecture (Level 2) for the Display

The third subsystem is for the PID controller. In this subsystem, the user input as well as
the information from the vacuum chamber will be sent to the Arduino Uno. The Arduino
will then send information to the display, tell the heater if it needs to adjust.

Figure 4: System Architecture (Level 2) for PID Controller

The fourth subsystem is for storing data. In this subsystem, the PID Controller code
determines which information needs to be saved i.e temperature, pressure, and stop time.
Some of the saved information will be sent to the Display later on.

Figure 5: System Architecture (Level 2) for Storing Data

7

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

The last subsystem is for the vacuum chamber. The vacuum chamber is already created in
the lab with the reaction occuring inside. The pressure sensor is attached to the vacuum
chamber while the temperature sensor is integrated into the k-Type thermocouple.
Information is then sent to the PID Controller.

Figure 6: System Architecture (Level 2) for the Vacuum Chamber

C. Prototype findings: results or effect

This capstone project is the Gas Reactor Sensors. The client, Chris Ebert, is the manager
of the Ted Schuur lab on the Northern Arizona University Campus. He works in the
sample preparation lab where the gas reaction systems operate. This team has been asked
to assist in updating the heaters used in the lab to increase the temperature of a carbon
reaction. The goal is to have an Arduino microcontroller get inputs from the pressure and
heating sensors attached to the vacuum chamber where the reaction occurs. The values
from these sensors will then be displayed on a Liquid-Crystal Display (LCD) screen. A
user will input the temperature, which is also displayed on the LCD screen. The pressure
sensor will be used to monitor the reaction and determine whether the heating block
should be on or turned off based on its readings.

For the first prototype, Elizabeth worked with the LCD screen. The LCD must receive
information from the proportional integral derivative (PID) controller and then display it.
The prototype is the part of the system architecture that directly connects the PID
controller to the display by sending the information to be displayed. This prototype will
reduce the risk of me using an LCD display for the first time. By figuring out how to
program the board with simple code, the team can later write more extensive code that

8

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

involves the PID sending the temperature information. This will save time later when
building the project.

The biggest challenge to making the prototype was writing the code. At first, all of the
information, the “set temp:,” “real temp:,” and the values were being displayed at the
same time because of how the loop was written. Two delays needed to be included, one
after each header and temperature value so that the information would be displayed
correctly. The information is displayed for two seconds on the LCD screen before
changing. The prototype did not take as long as expected to complete. The coding took
about an hour to write by looking at various Arduino sources online. The wiring of the
board also took about an hour since it went slowly and carefully to avoid making any
mistakes. After this was completed, the code was able to compile and upload to the
Arduino. The program was then run to verify that the screen was working. The results
from this prototype will influence the project. The team can be told that the LCD screen
is usable, and utilizing the one that the previous capstone team bought would work
successfully. There is no need to find a new type of display, purchase it, or figure out how
it works.

The second prototype, built by Kristin, was part of the code used to allow push buttons to
change the temperature of the vacuum. Two buttons were used to increment and
decrement user input for temperature by 10 degrees. Although it is currently not
communicating with the temperature device, this is the first step to that happening. This
data was given to other team members to take the data and display it on an LCD in real
time to show the current working temperature from the user.

This prototype will fit into the input aspect of the system architecture. It connects user
input to the Controller PID in order to change the temperature of the Vacuum Chamber.
From this prototype she hoped to learn more about what our Arduino will be functioning
as. It will also give a better understanding as to how the Controller PID is able to
communicate with the vacuum to actually alter the temperature that it is operating at. The
initial code for using buttons to operate on an Arduino was easier to understand but
finding how it integrates with the Arduino and its individual parts was more difficult. The
manual operation of temperature is a pivotal aspect of the design, as a specific operating
temperature for the system is required. If this part of the process does not work properly
then an important requirements specification for the project is lost. By ensuring that this
part of the project works properly, this requirement can also be fulfilled.

The main principle of the next prototype is: the voltage that the sensor outputs changes
accordingly to the gas level that exists in the atmosphere. The sensor outputs a voltage

9

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

that is proportional to the concentration of gas. In other words, the relationship between
voltage and gas concentration is the following: the greater the gas concentration, the
greater the output voltage the lower the gas concentration, the lower the output voltage.
Thus, codes are used to calculate the concentration with the voltage data.

This prototype uses the UNO starter kit to create a gas sensor mode which can detect the
concentration of gas nearby. From this, how to design a physical model from some drafts
can be better understood. The biggest challenge from this was to choose suitable values
of some components by calculation, like the resistor, to fit with the requirement voltage.
This work can reduce the project risk by providing a primary model to base design
requirements upon.

In the demonstration for this prototype, there was a failure to show the complete
prototype. Because the prototype was quickly assembled, but the calculations were not
finished it did not work. The biggest challenge faced was working on the prototype in
China, with the rest of the teammates in the U.S. There was an overall lack of
communication. Regarding the calculation, there was simply no time to complete that
aspect of the project. However, for the design draft, it took a lot of time to figure out to
convert the prototype from design to board. This prototype is the main part of the
hardware design of the project. Even though there were some defects, it provided a
primary model for our project.

The physical prototype piece that was built by Richard was the liquid crystal display
(LCD) and push-buttons. He had the opportunity to wire everything as well as program
both components of the system. He had never worked with a 16 output LCD screen
before this and it was very enlightening. Richard had a couple of challenges along the
way however, he overcame those and got the circuit to work with code written by Kristin,
Elizabeth, and Yuhao.

The prototype is the main essential piece of the project. Without having a display and a
way to change the desired “setpoint” the project is useless. That is why he wired the
entirety of the Liquid-Crystal-Display (LCD) screen and push buttons as well as
programmed some of it. By doing the prototype he learned how to utilize a
non-inter-integrated (I2C) LCD screen and the troubles that come with doing so. he
expected the programming to be a lot more difficult than the wiring of the board,
however, when it came down to it, it was quite the opposite. Although, he would have
liked to prototype the functionality of the heater. The parts to regulate this did not come
in. This prototype reduces the risk of accidents to the main heater. When the setpoint is in
place the real temperature will follow and the only things that need to be changed are the

10

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

proportional (P), integral (I), and derivative (D) variables which can be done quickly by
changing the associated number in the Arduino code.

The biggest challenge in making the prototype function was not having a potentiometer.
There were no videos on how to hook up a 16 pin LCD without the use of a
potentiometer. After many hours searching through forums and analyzing the code of
other people with the same board there was a simple solution that fixed the problem. If
you do not want to attach a potentiometer there needs to be an “analogWrite(digitalPin#,
Value)” line that gives the background a brightness value or it will not work. This
prototype took longer than expected because of a lack of knowledge of non-I2C LCDs
and contrast voltage.

The demonstration of the LCD and push buttons worked to control and display the
setpoint on the screen. The code correctly adjusted the setpoints by adding or subtracting
a value of ten while simultaneously updating the screen. This was the exact result that
was expected out of the prototype. The figures below show the output of the Arduino on
startup and when the push-button to increase the setpoint is pressed 5 times. It was a
successful demonstration because our hardware worked with the code as we thought it
would. Because it was successful, the results were what we expected them to because.
Overall, the different prototypes that we each had that were put together worked as we
wanted them to.

11

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

5. Final Design

a. System architecture with supporting details such as behavior, flowcharts,
schematics, diagrams, etc.

Figure 7: System Architecture

The above diagram shows an overview of the system architecture. This is the basic
structure of the system. The below figures each show detail into different components or
parts of it; input, storing data, vacuum chamber, display, and controller PID.

12

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

Figure 8: Inside of Our PID Temperature Controller

The above diagram shows an inside look of our PID Temperature Controller.

Figure 9: System Architecture (Level 2) for Input

13

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

Figure 10: System Architecture (Level 2) for the Display

Figure 11: System Architecture (Level 2) for PID Controller

14

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

Figure 12: System Architecture (Level 2) for Storing Data

Figure 13: System Architecture (Level 2) for the Vacuum Chamber

b. Text explanations of the major components of your system

There are six main components to our system. The first, the input, is where the user will
set a temperature between 550-950 degrees Celsius with push buttons, where it will then
be displayed on an LCD. The set temperature value will then be sent to the PID
Controller.

The second major component is the display, which is the LCD screen. In this component,
the PID Controller will have the actual temperature, set temperature, and pressure values

15

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

and the stop time. This information will be sent to the LCD screen to be displayed.

The third main component is the PID controller. In this component, the user input and
information from the vacuum chamber will be sent to the Arduino Uno. The Arduino will
then send information to the display, tell the heater if it needs to adjust.

The fourth main component is the storage of data. In this component the PID Controller
code determines which information needs to be saved i.e temperature, pressure, and stop
time. Some of the saved information will be sent to the Display later on.

The fifth major component is the vacuum chamber. The vacuum chamber is already
created in the lab with the reaction occuring inside. The pressure sensor is attached to the
vacuum chamber while the temperature sensor is integrated into the k-Type
thermocouple. Information is then sent to the PID Controller.

16

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

6. Results

a. The requirements spreadsheet with color indication of requirements testing
results

Figure 14: Requirements Spreadsheet with Testing Results

b. Important test results

There are four important tests that we used. The first is the Unit Matrix Test. We chose
to use this test to determine the functionality of our PID, ensuring that the input
temperature will be the temperature that the oven goes to. The second test is the Unit
Step-By-Step Test. We used this in two places, to test for Arduino to Arduino
communication and to ensure that our temperature sensor was working correctly. The
third test is an Integration Test, which checks that the major modules of the overall

17

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

system operate correctly together. We used this test to make sure all of the correct data we
need displays on the LCD Screen. The last test is the Inspection Test, which is done by
simply looking at the system. We used this test to make sure that the current value of the
temperature displays and is sent to the controller every 0.5 to 5 seconds.

Unfortunately, the results were not as expected. We never received the full power values
from the power supply mini-circuit because we could not figure out how to control the
voltage and current accurately enough to get consistent temperatures using the PID
controller. We failed the integration test and partially failed the Arduino to Arduino
communication due to Arduino limitations discovered when testing this aspect. We found
out that the wired connections between Arduinos and the LCD screen utilize the same
SDA and SCL input and output pins which only allows for one device to be wired and
communicate effectively between the two devices.

Figure 15: Arduino to Arduino Communication Testing Setup

c. Analysis of Results

In the testing of our project, we encountered a few roadblocks that were described in the
Major Tests and Analysis of Results sections of this document. Due to issues we faced
while testing, we had to change and get rid of some of our requirements to complete the
project. Also, during testing we had to modify different aspects of our design. We initially
were working with an I2C LCD screen but had to change to a regular LCD screen when
we faced issues with the first one. After we began testing, we needed more space on our

18

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

Arduino Board so had to change back to the I2C LCD screen to save space on the board
for other parts of the project. Although we modified our design, we still did not have
space on our board to operate the LCD screen and use Arduino to Arduino
communication as they required the same pins. As this was done at the end of our testing,
we did not find a quick and easy solution. In the future we could have experimented with
different forms of Arduino communication that were not wired.

We did a number of regression tests with our design, as the project was dependent on the
code working properly with our hardware. This is how we were able to fix bugs that
came up as we were completing our other testing. For example, this was done when we
encountered issues with our LCD screen when we were testing our Arduino to Arduino
communication. The LCD screen worked before we set up the communication but would
not as we were testing the functionality of the communication. As we were testing, the
importance of testing procedures became apparent. There are aspects of the project that
we would not have known to check on until working with the final product if we had not
tested them, the main example being our communication system working with the LCD
screen. Testing was important to discover the issue and, with more time, find a different
approach.

19

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

7. Conclusion of Capstone Report

a. Most important requirements and their results

The first major test that was done was the verification of the temperature system and the
K-type thermocouple that is used to read high temperatures. This test was done to verify
the accuracy of not only the temperature sensor itself but help the team find out what
adjustments needed to be made in the PID controller manual. For this test it was clear the
K-type thermocouple was not the most accurate device but when researched and
discussed with the client this was found to be normal and the client gave us the green
light to continue with this thermocouple. In the chart below it shows the accuracy of the
max6675 temperature sensor and thermocouple compared to a laser temperature sensor.
The chart plots the difference between the laser temperature reader and the temperature
sensor (k-type thermocouple) temperatures.

Figure 16: Difference in Temperature Sensor and real temperature

As you can see in the chart it is inconsistent in its ability to detect temperature at times.
The chart shows massive differences while being cooled and slightly heated.

20

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

The second major test was the Arduino to Arduino communication between the pressure
and temperature systems. In this test we did a number of sub-tests from sending a number
from one Arduino to another and printing it out to the serial monitor to trying to display
the received number or character to a liquid crystal display (LCD) screen. The image
below shows the characters being sent from Arduino master to Arduino slave. The code
below has the master send a value of x to the slave arduino which sends back the word
“hello” every time the “x” value changes.

Figure 17: Serial Monitor

The third major test was the integration test which tested each aspect of the PID
controller, the heating unit, set temperature, and LCD displaying all of the important
parameters. This test is shown below through an image of the LCD screen which
displays the set temperature “Set:” and the real temperature “Real temp:” The heating
unit as seen in the picture never climbs to the desired temperature but did climb to 21
degrees Celsius. The display depicting this information can be found in Appendix A.

Test one performed extremely well and had the accuracy that was expected from research
and communication with the client. The important requirement that was met here is the
ability to read the correct real temperature through the k-type thermocouple.

Test two performed well throughout the entire test except for one aspect. The system did
not have the ability to communicate between Arduinos and display it on the LCD screen

21

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

like the team had thought. The Arduino could transmit to the LCD screen or the other
Arduino but not both. This was a small hindrance in our test that could have been
changed by utilizing a Zigbee Arduino module for wireless communication.
Unfortunately, this problem was not found in our research and the team paid for it toward
the end of the project. The important requirement here was not met which was
communication between Arduinos and displaying it to the LCD screen.

Test three underperformed during the testing phase. The PID temperature controller did
not control the temperature to the accuracy that the team expected or wanted. This is
mainly due to the fact that we had trouble controlling the power supply converter to apply
the correct current and voltage to the SSR and heat the oven heater to the setpoint. The
most important requirements were not met as this was the heater control test and we did
not heat the oven to a temperature that was within 3 degrees of the setpoint.

b. Lessons Learned

In the testing of our project, we encountered a few roadblocks that were described in the
Major Tests and Analysis of Results sections of this document. Due to issues we faced
while testing, we had to change and get rid of some of our requirements to complete the
project. Also, during testing we had to modify different aspects of our design. We initially
were working with an I2C LCD screen but had to change to a regular LCD screen when
we faced issues with the first one. After we began testing, we needed more space on our
Arduino Board so had to change back to the I2C LCD screen to save space on the board
for other parts of the project. Although we modified our design, we still did not have
space on our board to operate the LCD screen and use Arduino to Arduino
communication as they required the same pins. As this was done at the end of our testing,
we did not find a quick and easy solution. In the future we could have experimented with
different forms of Arduino communication that were not wired.

We did a number of regression tests with our design, as the project was dependent on the
code working properly with our hardware. This is how we were able to fix bugs that
came up as we were completing our other testing. For example, this was done when we
encountered issues with our LCD screen when we were testing our Arduino to Arduino
communication. The LCD screen worked before we set up the communication but would
not as we were testing the functionality of the communication. As we were testing, the
importance of testing procedures became apparent. There are aspects of the project that
we would not have known to check on until working with the final product if we had not
tested them, the main example being our communication system working with the LCD

22

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

screen. Testing was important to discover the issue and, with more time, find a different
approach.

23

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

8. User Manual

a. Introduction

We are pleased that you have chosen Jumping Jacks for your business needs. There is a
strong need for a heating and pressure system to conduct experiments in the Shuur Lab.
We provide for you here a system designed to control the heating system and connect it to
the pressure system of the reaction system. Some of the key highlights include: a display
to show the desired and actual temperatures of the system, a temperature sensor to
measure the temperature of the ovens, and Arduino communication to connect the new
temperature system to the pressure system built last year. The purpose of this user manual
is to help you, the client, successfully use and maintain the gas reaction system going
forward. Our aim is to make sure that you are able to benefit from our product for many
years to come.

The project focuses on making the Isotope Sample Preparation Lab more power efficient
and up to date in terms of electronics. The project outline was to enhance, automate, and
make a pressure and temperature monitoring system that the client uses to work on
carbon samples to create needed isotopes. The client expressed issues of the old system
which were: old parts being discontinued, old power supplies coming to an end, and the
need for manual control throughout the process. The automation of the sampling process
would help the client indefinitely as the reaction can take anywhere from 2-5 hours and
has to be manually turned off using the current system. With the proposed solution this
process would happen on its own after the pressure starts to level out for a prolonged
period of time. The project would be able to read the pressure of 13 samples, 12 arranged
by the client and a reference pressure. Although, having a pressure and temperature
system work together is not uncommon; the niche aspect comes in with the magnitude the
pressure and temperature systems have to be able to read and reach. The carbon samples
will have to be heated up anywhere from 600 to 900 degrees Celsius. The need for this is
due to carbon's ability to withstand extreme temperatures and turn into three usable
isotopes for analysis.

We identified several important requirements that were the focus of our design and
subsystems. These requirements included:
● The Arduino microcontroller will get inputs from the pressure and heating sensor

that are attached to the vacuum chamber where the reaction occurs.
● The values from the pressure and temperature sensor are then displayed on an LCD

screen for easy viewing.

24

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

● A user input will be needed for the “set temperature” which is also displayed on the
LCD screen.

● The pressure sensor is used to monitor the reaction and determine whether the
heating block should be on or off based on its readings.

● Store the stop time of the reaction and print it on the LCD screen.

The subsystems that we identified for this project are as follows: the input, the display,
the PID controller, storing data, and the vacuum chamber.

The first subsystem is for the input. In this subsystem, the user will set the temperature
between 550-950 degrees Celsius with push buttons. The set temperature value will then
be sent to the PID Controller. The second subsystem is for the display. In this subsystem,
the PID Controller will have the actual temperature, set temperature, and pressure values
and the stop time. This information will be sent to the LCD screen to be displayed. The
third subsystem is for the PID controller. In this subsystem, the user input as well as the
information from the vacuum chamber will be sent to the Arduino Uno. The Arduino will
then send information to the display, tell the heater if it needs to adjust. The fourth
subsystem is for storing data. In this subsystem, the PID Controller code determines
which information needs to be saved i.e temperature, pressure, and stop time. Some of the
saved information will be sent to the display later on. The last subsystem is for the
vacuum chamber. The vacuum chamber is already created in the lab with the reaction
occuring inside. The pressure sensor is attached to the vacuum chamber while the
temperature sensor is integrated into the k-Type thermocouple. Information is then sent to
the PID Controller.

The solution that our group identified was a proportional (P), integral (I), derivative (D)
(PID) temperature controller that works in conjunction with a pressure system. The
project would be able to read the pressure of 13 samples, 12 arranged by the client and a
reference pressure. The Arduino microcontroller will get inputs from the pressure and
heating sensor that are attached to the vacuum chamber where the reaction occurs. The
project then uses the PID temperature controller to reach a desired “setpoint” chosen by
the user and left alone while the reactions go to completion. The values from the pressure
and temperature sensor are then displayed on an LCD screen for easy viewing. A user
input will be needed for the “set temperature,” which is also displayed on the LCD
screen. The pressure sensor is used to monitor the reaction and determine whether the
heating block should be on or off based on its readings. Lastly, the stop time of the
reaction will be stored and printed on the LCD screen.

This design was comprehensive as it would be able to meet each of the requirements set
both by the client as well as our team. In our testing, we tested each of the major
components of the project, the LCD screen, measuring different temperatures, and setting
the temperature of the oven. Although not all of the tests passed, we were able to cover
each of the main components of the design, following the steps taken in planning to find

25

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

a solution. In this we also attempted to cover more than the set requirements we initially
had, adding Arduino to Ardunio communication to connect to the previous team’s project
as well to create an entire, connected system.

b. Installation

First, it is important to know that the code we have used for the project can be found in
Appendix B, Appendix C, and Appendix D. This code allows for the LCD screen to
display the measured temperatures, for the PID controller to set the temperature of the
system, and for communication between the Arduinos. The only user interface with the
device will be the use of the two buttons to set the temperature of the oven, as it ideally
turns off as needed when connected to the pressure aspect of the project. This is described
more in the section below.

Installation of the device should be relatively simple, as there is an existing device in
place that would just need to be replaced. The device would need to be connected to the
power source supplied with the oven and existing parts given by the Shuur Lab. THis
would need to be connected to the Arduino to keep it powered, and also connected to an
outlet as it is now for the ovens. When moving the project, you would need to be delicate
so as to not displace the wires or any of the various parts. The code is currently uploaded
to the Arduino, but once all aspects of the code are working properly in the future, all
code would need to be saved into a single file and uploaded using Arduino IDE to the
Arduino itself. The Arduino is an Ardunio Mega so that should be selected when
installing the software. The device would then be able to be connected directly to the
current ovens and should work as needed. The below image shows the current setup of
the system in the Shuur Lab.

Figure 18: Current Setup

26

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

c. Configuration and Use

Once the device is properly installed, there is little user interaction that will be required.
The only user interface is the use of the buttons that will control the temperature of the
system. There are two buttons, one which will increase the temperature of the system,
and a second button that will decrease the temperature of the system. Both operate in
increments of 5 degrees Celsius. Once the proper temperature is selected using the
buttons there are no longer any actions that need to be taken by the user. The temperature
of the oven will operate automatically.

d. Maintenance

There are few parts or pieces of code in this system that would need to be maintained.
The main component, the thermocouple, can be easily replaced if necessary. The current
part would need to be taken out of the system, then replaced in the same spot, reattaching
the wires the old part had used to the new part. This same procedure can be done for each
of the components in the system; the buttons, resistors, or the solid state relay. As any of
the parts are replaced with equivalent parts, there would be no need to change the code on
any of the Arduino boards. Below are links to replacements for hardware parts.

For the solid state relay:
https://www.omega.com/en-us/control-monitoring/relays/solid-state-relays/p/SSRL240-6
60

For the thermocouple:
https://www.omega.com/en-us/control-monitoring/relays/solid-state-relays/p/SSRL240-6
60

For the LCD screen:
https://www.omega.com/en-us/control-monitoring/relays/solid-state-relays/p/SSRL240-6
60

For the buttons:
https://www.mouser.com/ProductDetail/SparkFun/COM-10302?qs=WyAARYrbSnaYi0o
OM0cIVQ%3D%3D&gclid=CjwKCAjwlID8BRAFEiwAnUoK1cGx_BE_-M9dirYZ19
XEcF-GA3egh7usD30ecMgm6v11OBhQlvqTCxoCz3UQAvD_BwE

27

https://www.omega.com/en-us/control-monitoring/relays/solid-state-relays/p/SSRL240-660
https://www.omega.com/en-us/control-monitoring/relays/solid-state-relays/p/SSRL240-660
https://www.omega.com/en-us/control-monitoring/relays/solid-state-relays/p/SSRL240-660
https://www.omega.com/en-us/control-monitoring/relays/solid-state-relays/p/SSRL240-660
https://www.omega.com/en-us/control-monitoring/relays/solid-state-relays/p/SSRL240-660
https://www.omega.com/en-us/control-monitoring/relays/solid-state-relays/p/SSRL240-660
https://www.mouser.com/ProductDetail/SparkFun/COM-10302?qs=WyAARYrbSnaYi0oOM0cIVQ%3D%3D&gclid=CjwKCAjwlID8BRAFEiwAnUoK1cGx_BE_-M9dirYZ19XEcF-GA3egh7usD30ecMgm6v11OBhQlvqTCxoCz3UQAvD_BwE
https://www.mouser.com/ProductDetail/SparkFun/COM-10302?qs=WyAARYrbSnaYi0oOM0cIVQ%3D%3D&gclid=CjwKCAjwlID8BRAFEiwAnUoK1cGx_BE_-M9dirYZ19XEcF-GA3egh7usD30ecMgm6v11OBhQlvqTCxoCz3UQAvD_BwE
https://www.mouser.com/ProductDetail/SparkFun/COM-10302?qs=WyAARYrbSnaYi0oOM0cIVQ%3D%3D&gclid=CjwKCAjwlID8BRAFEiwAnUoK1cGx_BE_-M9dirYZ19XEcF-GA3egh7usD30ecMgm6v11OBhQlvqTCxoCz3UQAvD_BwE

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

e. Troubleshooting Operation

During testing there were a few different issues that arose and could occur again. The
first is the LCD screen. In general LCD screens are reliable, but we had multiple issues
with the two LCD screens that we had used. This would be a simple item to fix, as it
would just require replacing the LCD screen in the current model with the same screen.
This would require removing the current screen and placing the correct wires in the
correct spots for the new screen. At this moment in time, there are wires connected to the
ground and power portions of the breadboard and Arduino. These wires will not be
changed and can be connected to the power and ground pins in the LCD screen, whose
marks can be seen on the side of the LCD screen. The remaining pins are connected using
wires to pins 12, 11, 6, 5, 4, and 3 on the Arduino respectively as pins RS, Enable, D4,
D5, D6, and D7.

A second problem that could arise is the accidental removal or breaking of the buttons
used by the user, as they would be used often and could break down. The fix for this
would be the same as the LCD screen, with the omission of the wires needed. The
replacement here would be to buy a new button (whose link is listed in the above section)
and place it in the same spot as the current button.

The last issue that we could foresee would be the moving of wires from the Solid State
Relay, as we can across that problem when we moved the project too much in the testing
phase. This would be solved by using a small screwdriver to loosen the screws on the
solid state relay. You would then need to place the ends of the wires without the coating
back into the space directly under the screw. While holding the wire there, use the
screwdriver to tighten the screw again with the wire underneath.

f. Conclusion

We wish you years of productive use of this system that we have laid out. We also hope
this manual has helped in the building and operation of this new system and will help in
replacing the current parts that you have. And we are happy to have been able to help
with your problem.
Below are our email addresses if you wish to contact us in the future, we would be happy
to answer any questions with the system as they arise:
kah635@nau.edu, rdh258@nau.edu, yw249@nau.edu, eaz34@nau.edu

28

mailto:kah635@nau.edu
mailto:rdh258@nau.edu
mailto:yw249@nau.edu
mailto:eaz34@nau.edu

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

9. Appendices

Appendix A

This display shows the set and real temperatures for our system. Where the set temperature is
given by the user, and the real temperature is measured using the k-type thermocouple.

29

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

Appendix B

The code below works to allow Arduino to Arduino communication. The setup of this
communication had not fully been fleshed out as this was one of the issues that we came across
in testing.

#include <Wire.h>
#include <LiquidCrystal.h>
int LED = 13;
int x = 0;
int Contrast = 75;
LiquidCrystal lcd(12, 11, 6, 5, 4, 3);

void setup() {
pinMode (LED, OUTPUT);
// Start the I2C Bus as Slave on address 9
Wire.begin(9);
// Attach a function to trigger when something is received.
Wire.onReceive(receiveEvent);
analogWrite(7,Contrast);
lcd.begin(16, 2);

}
void receiveEvent(int bytes) {
x = Wire.read(); // read one character from the I2C
}
void loop() {
//If value received is 0 blink LED for 200 ms
if (x == '0') {
lcd.clear();
lcd.setCursor(0,0);
lcd.print("Here");

digitalWrite(LED, HIGH);
delay(200);
digitalWrite(LED, LOW);
delay(200);
}
//If value received is 3 blink LED for 400 ms
if (x == '3') {
lcd.clear();

30

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021
lcd.setCursor(0,0);
lcd.print("Hear");
digitalWrite(LED, HIGH);
delay(400);
digitalWrite(LED, LOW);
delay(400);
}
}

MASTER
// Include the standard Wire library for I2C
#include <Wire.h>
int x = 3;
void setup() {
// Start the I2C Bus as Master
Wire.begin();
}
void loop() {
Wire.beginTransmission(9); // transmit to device #9
Wire.write(x); // sends x
Wire.endTransmission(); // stop transmitting
//x++; // Increment x
//if (x > 5) x = 0; // reset x once it gets 6
delay(500);
}

31

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

Appendix C

The below code is for the temperature sensor and displaying the found temperatures on the LCD
screen. This is working properly in our system.

/* Max6675 Module ==> Arduino
* CS ==> D10 \\cs = chip select??
* SO ==> D9 \\so = standard output
* SCK ==> D13 \\sck = serial clock
* Vcc ==> Vcc (5v)
* Gnd ==> Gnd */

//LCD config
#include "max6675.h"
#include <Wire.h>
#include <LiquidCrystal.h>
int Contrast=75;
LiquidCrystal lcd(12, 11, 6, 5, 4, 3);

int thermoDO = 9;
int thermoCS = 10;
int thermoCLK = 13;

//Start a MAX6675 communication with the selected pins
MAX6675 thermocouple(thermoCLK, thermoCS, thermoDO);
int maximum_firing_delay = 7400;

unsigned long previousMillis = 0;
unsigned long currentMillis = 0;

int temp_read_Delay = 500;
int real_temperature = 0;
int setpoint = 100;
bool pressed_1 = false;
bool pressed_2 = false;

void setup()
{

32

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

analogWrite(7,Contrast);
lcd.begin(16, 2);

}

void loop() {
currentMillis = millis();

// Max 6675 can only read every 500ms or ½ sec
if(currentMillis - previousMillis >= temp_read_Delay){
previousMillis += temp_read_Delay; //Increase the previous time for next loop
real_temperature = thermocouple.readCelsius(); //get the real temperature in Celsius

degrees

//Print the values on the LCD
lcd.clear();
lcd.setCursor(0,0);
lcd.print("Set: ");
lcd.setCursor(5,0);
lcd.print(setpoint);
lcd.setCursor(0,1);
lcd.print("Real temp: ");
lcd.setCursor(11,1);
lcd.print(real_temperature);

}
}

33

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021

Appendix D

The following code is for the PID control. This was another aspect of the project that we were
unable to make work properly. The hardware setup works, but there are still some issues with the
code that need to be worked out.

/**
* PID RelayOutput Example
* Same as basic example, except that this time, the output
* is going to a digital pin which (we presume) is controlling
* a relay. the pid is designed to Output an analog value,
* but the relay can only be On/Off.
*
* to connect them together we use "time proportioning
* control" it's essentially a really slow version of PWM.
* first we decide on a window size (5000mS say.) we then
* set the pid to adjust its output between 0 and that window
* size. lastly, we add some logic that translates the PID
* output into "Relay On Time" with the remainder of the
* window being "Relay Off Time"
**/
#include <max6675.h>
#include <PID_v1.h>
#define RelayPin 8

//Define Variables we'll be connecting to
double Setpoint, Input, Output;

//Specify the links and initial tuning parameters
PID myPID(&Input, &Output, &Setpoint,9.1,0.3,1.8, DIRECT);

int WindowSize = 1000;
unsigned long windowStartTime;

//31855 stuff
int thermoCLK = 9;
int thermoCS = 22;
int thermoDO = 13;
//int backLight = 13; // pin 13 will control the backlight
MAX6675 thermocouple(thermoCLK, thermoCS, thermoDO);

34

EE486C
Team 4
Gas Reactor Sensor
April 16, 2021
void setup()
{

Serial.begin(9600);
windowStartTime = millis();

//initialize the variables we're linked to
Setpoint = 100;

//tell the PID to range between 0 and the full window size
myPID.SetOutputLimits(0, WindowSize);

//turn the PID on
myPID.SetMode(AUTOMATIC);

pinMode(RelayPin, OUTPUT);
}

void loop()
{
//pinMode(RelayPin, OUTPUT);
Input = thermocouple.readCelsius();

myPID.Compute();
Serial.print("INPUT:");
Serial.println(Input);
Serial.print("OUTPUT:");
Serial.println(Output);

delay(2000);
//have delay at 500 when running
/**
* turn the output pin on/off based on pid output
**/
if(millis() - windowStartTime>WindowSize)
{ //time to shift the Relay Window
windowStartTime += WindowSize;

}
if(Output > millis() - windowStartTime) digitalWrite(RelayPin,HIGH);

else digitalWrite(RelayPin,LOW);
}

35

