

Large Scale DRAM Array Model

User Manual
Revised May 2018

Sponsored by Micron Technology, Inc.

Contact Information

DRAM Engineers
Jinming Yang e-mail: jy345@nau.edu ph: +86 139.9088.6835

Zeyu Zhang e-mail: zz74@nau.edu ph: +86
156.5666.0507

Demetria Shepherd e-mail: dcs245@nau.edu ph: +1 602.574.7045

Colby Weber e-mail: ccw95@nau.edu ph: +1
623.628.8708

Abdulrahman Alqahtani e-mail: asa266@nau.edu ph: +1 202.568.5218

Client
Daniel Eichenberger e-mail: deichenberge@micron.com

Capstone Mentor
Ashwija Korenda e-mail: Ashwijakorenda@nau.edu

Faculty Mentor
Julie Heynssens e-mail: julie.heynssens@nau.edu

DRAM Engineers website
https://www.cefns.nau.edu/capstone/projects/EE/2018/DRAMBoard/index.html

Micron Technology website
https://www.micron.com/

1

Table of Contents

1.0 Introduction ……………………………………………………………………………………………...……. ​4 to 6
1.1 Scope & Purpose …………………………………………………………………………...…... ​4
1.2 Model Functionality ……………………………………………………………………...….. ​4
1.3 Acknowledgements ……………………………………………………………………......…. ​6

2.0 Background Information …………………………………………………………………..……..…. ​7 to 9

2.1 Theoretical M-Bit ………………………………………………………………………..…….... ​7
2.2 Actualization and Testing ………………………………………………………..……... ​8
2.3 Grid-Connected Configuration ………………………………………………..……. ​9

3.0 Start-up of the Model ……………………………………………………………………..…………… ​9 to 12

3.1 Preparing to use the Model Manually …………………………………...…… ​10
3.2 Preparing to use the Model via Software ………………………………..... ​10
3.3 Transporting the Model ………………………………………………………………….. ​12

4.0 Configuration and Use ………………………………………………………………………..…….. ​12 to 16

4.1 Writing ……………………………………………………………………………………………..……. ​13
4.1.1. Digital Signal by Manual Control ……………………………..…… ​13
4.1.2. Message Stored by Microcontroller ………………………..…… ​14

4.2 Reading ……………………………………………………………………………………………..…. ​15
4.2.1 Decoding Information ……………………………………………………..… ​15
4.2.2 Command Code Table …………………………………………………….... ​16

4.3 Refreshing ………………………………………………………………………………………….... ​16

5.0 Maintenance ………………………………………………………………………………………………….. ​17 to 18

5.1 Software ………………………………………………………………………………………………… ​17
5.2 Hardware ……………………………………………………………………………………………… ​18

6.0 Troubleshooting Operation ………………………………………………………………………. ​19

2

7.0 Status of Planned Features: Work Breakdown Structure …………………. ​21 to
25

7.1 Abdulrahman’s WBS Explanation ……………………………………………….... ​21
7.2 Colby’s WBS Explanation …………………………………………...…………………… ​22
7.3 Demetria’s WBS Explanation …………………………………...……………………. ​23
7.4 Jinming’s WBS Explanation ……………………………………...…………………… ​24
7.5 Zeyu’s WBS Explanation …………………………………………………………………. ​25

8.0 Conclusion …………………………………………………………………………………………………….. ​27

9.0 References …………………………………………………………....………………………………………... ​28

10.0 Appendices ………………………………………………………………………………………………….. ​29 to 34

A - Finalized 8X8 DRAM Array Schematic ………………………………………. ​29
B - Abdulrahman’s WBS ……………………………………………………………………….. ​30
C - Colby’s WBS ……………………………………………………………………………….…….... ​31
D - Demetria’s WBS ………………………………………………………………………………... ​32
E - Jinming’s WBS …………………………………………………………………………………... ​33
F - Zeyu’s WBS ……………………………………………………………………………………….… ​34

3

1.0 Introduction
The following is a detailed user guide for the 8X8 DRAM Array model designed by
the DRAM Engineers of the NAU Undergraduate Capstone team. The purpose of
this model is for Micron Technology to use this as a simulation of the functions of
DRAM, such as writing to, reading from, and refreshing memory cells within the
DRAM Array. This model is intended to be used by Micron recruiters so they may
show the functions of DRAM to prospective engineering employees at NAU’s
career fairs. It provides the recruiters an alternative to just showing DRAM chips
on printed circuit boards.

1.1 Scope and Purpose
The need for a Large Scale model of a DRAM Array was made clear by Micron
Technology’s desire for a model to demonstrate to prospective employees of
Micron’s at NAU career fairs. Currently, Micron Recruiters have no way of
demonstrating the operations and components that comprise their product
that brings in a majority of the company’s revenue.

So, the purpose of this model is
● To show the functions of DRAM
● To show the structure of a DRAM memory cell
● To show how a grid connected array is controlled

1.2 Model Functionality
The model accomplishes all three purposes outlined. The user is able to
perform certain operations on the array, such as a computer would in a real
DRAM chip. Using grid-connected push buttons, when the user presses one of
the vertical buttons (wordlines) and one of the horizontal buttons (digitlines),
then a cell has been selected to perform a “Write” action upon. The user can
control what is written to the array by using a toggle switch to select what to
write, a logic “1” or a “0”, as shown in Caption 1 of Figure 1. When both desired

4

buttons are pressed and a “1” is selected to be written, the LED/light indicator
on that cell will brighten, and if a “0” is selected, the light on the cell will
immediately dim, shown in Captions 2 and 3 of Figure 1. It can also be
observed from Figure 1 that a cell is being manually charged in Caption 5.

The model is also a visual representation of DRAM, as much as it is a
simulated representation. The user can visually see the construction of the
array and how each memory cell is made up of an m-bit cell, a common type
of memory cell structure used in this model, shown in Caption 4 of Figure 1.
The components making up each memory cell include a storage capacitor,
NMOS transistor, LED, and resistor, which will all be visible to an Electrical
Engineer from looking directly down upon the array, shown in Captions 4a-4c
of Figure 1.

Finally, the array is arranged in a grid-connected format. This means that the
all 64 cells can be accessed independently using a combination of 16 push
buttons. 8 buttons represent digitlines and another 8 represent wordlines
which together control the two inputs of each cell. When a horizontally
connected digitline button is pressed, and a vertically connected wordline
button is pressed, that will correspond to an individual cell to which the user
can write to, as featured in Figure 1. This grid-connected configuration is how
an actual DRAM Array is connected on a chip.

5

1.3 Acknowledgements
DRAM Engineers would like to thank Micron Technology for providing the
Northern Arizona University College of Engineering, Forestry, and Natural
Sciences with this capstone project for the 2017-2018 academic year. We would
also like to thank our Capstone Mentor, Ashwija Korenda, and our Faculty
Mentors, Julie Heynssens, Dr. David Scott, and Dr. Kyle Winfree for their
support and guidance with this project.

6

2.0 Background Information
In order to fully understand this project, it is necessary to familiarize oneself with
the “heart” of the DRAM array, the m-bit cell. This is a commonly used type of
memory cell used within the semiconductor memory field. It can be found storing
data in a multitude of devices such as modern computers, smartphones, and
many other Internet of Things devices. This section is provided to inform how an
m-bit cell operates, as well as how the team went from the theoretical m-bit
schematic, to the actual used in the model and why certain modifications were
made.

2.1 Theoretical m-bit
The m-bit schematic is the main working component of this model. The team
first examined a theoretical depiction of an m-bit schematic as seen in Figure
2. The circuit may seem complex at first glance, but its mode of operation is

fairly simple. The NMOS transistor, denoted
M1, acts as a switch with two inputs shown as
a digit-line and word-line. A storage
capacitor, C1, is connected to the output side
of M1. When the wordline and digitline of M1
are in a high state, meaning a voltage pulse
is being applied on both lines, then M1
creates a path for data to flow to C1. The
information written will be in the form of a
logic “1” or “0”. C1 is always theoretically
pre-charged to a V​CC​/2 state, which is just

half of the overall voltage being supplied to the array. This allows for a quick
transition to either pulling the capacitor to the full V​CC​ writing a “1”, or to
ground writing a “0”. This was the basis for the project and the team’s starting
point in constructing a 64 m-bit array. From here, this schematic was built,
tested and modified to fit the requirements of our client, Micron Technology.

7

2.2 Actualization and Testing
After initial testing, the group finalized the schematic shown in Figure 3. The
circuit shown still retains the original structure of an m-bit cell of 1 transistor
and 1 capacitor for data storage. Digit and wordlines are still connected at the
two critical inputs of the transistor, the source and gate, but are now physical

inputs in the form of 4-pin push buttons. Both are powered by an external 9V
battery source and when both are pressed, the transistor allows a path for
current to flow and in turn a voltage is stored on that 4.7mF capacitor. With
such a large sized capacitor, it allows for a slow discharging rate which is the
nature of DRAM to be volatile and lose charge over time. To demonstrate this,
an LED was put in parallel with each capacitor of each cell which will brighten
when the capacitor is fully charged, and then slowly dim as charge begins to
fade from the capacitor.

A resistor was also added to the circuit which extends from the gate of the
transistor connected to the wordline (WL[1]), to ground. The resistor was
implemented to prevent any high floating gate voltages the team observed in
testing. These floating gate voltages were a result from firing initial firing
upon the wordline, which would send a voltage and open up the gate of the
transistor allowing current to flow to the capacitor, but due to the capacitor
remaining charged, these gates would be left open until the capacitor is fully
discharged. So, this means that essentially any wordline would remain high for

8

several minutes after initial firing allowing for multiple cells to be accessed
when firing upon a single digitline row. The resistor to ground now only allows
for the wordline to remain high as long as the button is pressed, while also still
being able to store charge on the capacitor.

2.3 Grid-Connected Configuration
Once the schematic from Figure 2 was finalized in Figure 3, this circuit was
used in the construction of the final, 64 m-bit array. Appendix A shows the full
construction of the DRAM Array in a grid-connected 8X8 configuration; 8
wordlines and 8 digitlines are able to independently control each one of the
64 cells. Each wordline button is connected to 8 m-bit cells aligned in a
horizontal row at the transistor gates. Similarly, each digitline button is
connected to 8 m-bit cells arranged vertically in a column at the source sides
of each transistor. This was repeated 7 more times both control lines, creating
a total of 8 wordlines and 8 digitlines, as shown in the finalized DRAM array
schematic in Appendix A.

3.0 Start-up of the Model
The DRAM array model consists of two main subsystems which include the actual
8X8 array and microcontroller, both mounted on a carrying board for ease of
transport.

To operate the model, the user will need:

● The entire model with the DRAM array, microcontroller, battery, and toggle
switch.

● The provided USB cable connecting the microcontroller to a
laptop/computer.

● The software provided by DRAM Engineers.
● A working laptop/computer with USB ports.
● Arduino Genuino software which can be downloaded at:

https://www.arduino.cc/en/Main/Software

9

3.1 Preparing to use the Model Manually
The DRAM array is powered by an external power source in the form of a 9V
battery. This battery is contained within a sleeve attached to the carrying
board and requires no help from the user to power the board aside from

regular battery replacement (see 5.0 Maintenance). Using the attached pin on
the sleeve, the user can easily remove and replace the battery as shown in
Figure 4. The battery is connected to a toggle switch, also attached to the
carrying board, which can toggle between V​CC​ (9V) and ground so the user
may
choose to write either a “1” by toggling to V​CC​, or a “0” by toggling to ground, as
shown in Figure 5.

3.2 Preparing to use the Model via Software

10

The model can also be controlled using software installed on the provided
Arduino Mega microcontroller attached to the board. To use software, the
user
will need to first connect the
microcontroller to their laptop or
computer of choice, with the Arduino
Genuino software installed listed in
section 3.0, using the provided USB cable.
Then, the user will need to run the
program provided by DRAM Engineers
and open the Serial Monitor located in
the top left corner of the Arduino
Genuino software, as shown in Figure 7. Once the Serial Monitor is opened, the
user will be prompted to enter a digitline and wordline address, as well as be
provided a method to refresh the array via software.

11

3.3 Transporting the Model
The entire model is mounted on a carrying board with handles on both sides
for a portability ease, shown in Figure 8. The entire model measure 20” x 7” x 6”
(L x W x H) and weighs approximately 5 lbs.

Please be advised:
● If the model is transported outside, it should be covered from any rain or

snow as that will critically damage the DRAM array and microcontroller.
● Do not drop the model if at all possible.
● Always pick up the model by the provided handles in the upright position

with the blue capacitors facing upward.

4.0 Configuration and Use
This DRAM model is to simulate the basic RAM functions which allows users to
write and read information, with the advantage of rapid reaction, low cost, and

12

small size. The functions of this model are divided to three parts which are
information writing, information reading and refreshing respectively. This DRAM
model can only achieve parts of the more advanced functions because this
model only contains the DRAM array. The model does not contain other
components of DRAM such as the Sense Amp or other peripheral circuitry.
However, this completed basic DRAM array could be used to develop the deep
functions moving forward.

4.1 Writing
The first basic function is to write the signal to certain cells in DRAM array by
charging the capacitor, which would be shown by LED connected in parallel.

Instructions for Writing to the Array:
● Option #1: Write Manually

1. Position the toggle switch into of the two positions listed in Section
3.1, selecting whether a “1” or “0” will be written.

2. Using the provided numbering flags as a guide, the user will then
press a single digitline and wordline button to write to a selected
cell.

● Option #2: Write via Software

1. Connect the Arduino Mega microcontroller to a laptop/computer via
the provided USB cable.

2. Download/open the Arduino Genuino software and open the
provided program titled “DRAM_Engineers”.

3. Run the program and open the Serial Monitor to show the
corresponding instructions.

4. Enter a corresponding digit and wordline address as prompted by
the Serial Monitor to write to a memory cell.

4.1.1 Digital Signal by Manual Control

13

Digital signals are widely used in the field of computer science. CPU
(Central Processing Units), microprocessors and microcontrollers can only
receive and handle these digital signals.

There are only two states of a digital signal; a high state is represented by
a logic “1” and a low state corresponds to a logic “0”. In this DRAM array
model, a capacitor on a cell being charged means that this cell is in a high
state. If the user provides voltages on both digitlines and wordlines
continuously, this cell will keep the high state for as long as both buttons
are pressed. Otherwise, the capacitor will discharge, which means the state
of this cell is forced to low.

There is an inner 9V battery source provided to fire on the digitlines and
wordlines manually. The push buttons on the digitlines and wordlines give
the user more choices on how to select a cell they would like to perform a
write action upon. Via manual control, only digital signals can be stored in
to the memory cells. It is allowed to write to multiple cells at the same time
but, might not be as brightly shown by the LEDs because the divided
voltage may not fully satisfy their voltage requirement to fully brighten.

When the voltage source disconnects from the digitlines and wordlines, the
digital signal stored in the cell will fade away in a short period, so
manual-controlled DRAM array is not allowed to transmit data over long
periods of time.

4.1.2 Message Stored by Microcontroller
There are 64 cells in the DRAM array, which means users could store 64 bits
in the array by using the microcontroller. Based on the
decoding/command tables, users could translate a message using simple
bit allocation done by the Arduino Mega, then store the bits into the DRAM
array. This part will need a seperate completed software code, so it will be
developed in the future work.

14

4.2 Reading

Reading data is one of the important functions of a DRAM array. DRAM is a
kind of semiconductor memory, so when users store digital signals in the
array, ideally others could read the correct information given certain
decoding/command tables as mentioned below. For this model, no matter
what kind of information is stored in the DRAM array, users have to use the
microcontroller or LEDs to read the information from array.

Instructions for Reading from the Array:
● Option #1: Read Manually

1. Whether the information was stored via software or manual
operation, the user can visually read out if a “1” is stored on a cell by
observing the LED on that cell brighten. A “0” stored will immediately
dim the LED.

● Option #2: Read via Software

1. This can only be done if the information written was done via
software.

2. When the software has written to the selected cell, a message on the
Serial Monitor will read “The cell is charged”.

3. The microcontroller will then discharge the selected cell after 5
seconds and will read “The cell is discharged”.

4.2.1 Decoding Information
Decoding is a commonly used example of how digital signals are used by
the DRAM array. There should be a “rule” which is known by both the
receiver and sender of the message stated in Section 4.1.2. Based on the
special translating rule, the senders could charge a certain cells’ address,

15

to store the digital signal on the array. When the receiver observes this
digital signal on the array, they would use the microcontroller to read the
certain cells which have already charged, then translate this cryptographic
information based on the translation rule.

4.2.2 Command Code Table
The theory of command code table is almost the same as with the
decoding translation rule. However, there is a distinct difference between
the decoding and the command code table; the matching command is
public but the rule of decoding is private.

Actually, with a built-in program (java, C++, python, etc.) the charged DRAM
array is a kind of controller (to be developed). Different commands will
match the different addresses charged. Users could achieve control of the
PC through charging the DRAM array according to a custom made
command code table. The theory is that when the users charge the DRAM
array, the microcontroller could read the digital signals and send those
signals to the processor. Then, the processor will execute the specific
command based on the translation rule encoded into a program,
consequently, achieving the purpose of control of the PC automatically.

4.3 Refreshing
The industry standard for refreshing a DRAM array is 64ms [1]. In order to
simulate this function on the model, software was developed to allow the
user to refresh the model, column by column each controlled by a digitline.

Instruction for Refreshing the Array:

1. Connect the Arduino Mega microcontroller to a laptop/computer via
the provided USB cable.

2. Download/open the Arduino Genuino software and open the
provided program titled “DRAM_Engineers”.

16

3. Run the program and open the Serial Monitor to show the
corresponding instructions.

4. Enter “Refresh” into the Serial Command Line and observe the array
refresh column by column.

5.0 Maintenance
Some forms of semiconductor memory have a volatile nature, which requires a
constant power source to hold stored information data on the memory array.
This is the case for DRAM, and due to its volatility, the model and all electrical
components will experience constant charging and discharging cycles. Over
time, this will lead to the failure of some of these key electrical components. This
section provides general tips and information to continuously use and maintain
the DRAM model broken down into two different aspects, the software and
hardware.

5.1 Software
As mentioned before, the DRAM array can be controlled in two different
operations: manually and through software. Using software, the user is
able to input a memory address and have the microcontroller send digital
pulses to store charge on the selected address. DRAM Engineers will
provide with this report the necessary program to use software to control
the array. The code is relatively maintenance free. The only maintenance in
required maybe regular updating of the Arduino Genuino software used to
create and run the software, listed in Section 3.0. Figure 6 shows an
example of the code structure for the DRAM array model.

17

:

For information on coding in the Arduino software system, please refer
back to company’s website at ​https://www.arduino.cc/en/Guide/HomePage.

5.2 Hardware
There are so many components on this project that certain parts might
need to be maintain so often. These include:
● LEDs:​ ​If the LEDs burn out, they will need to be replaced with similar

LEDs requiring a voltage of 9V or less to power them. .
● Capacitors:​ ​The capacitors might stop holding charges after so many

charge cycles. In that case replace capacitors as needed in order to
observe the element’s state of charging and discharging via the LED for

18

approximately 5 seconds. Use capacitance values of 4700uF or higher
and are able to store up to 6.3V.

● NMOS Transistors:​ If it is observed that multiple cells are being
accessed at once, then a transistor has probably met its product end of
life. Please replace any transistors with standard breadboard sized
NMOS transistors. The team recommendation is the ZVN3306A model
transistors.

● Resistors:​ ​If multiple cells are still being accessed after transistor
replacement, then it is likely that a resistor has met the end of its
product life. Replace any resistor with a value of 47kΩ or higher.

● Push Buttons:​ ​From observations, the push buttons can sometimes lift
from the breadboard accidently, so be careful to replace the push
button back as to not break off one of the 4 pins. If that does occur,
please replace with one of the provided extra push buttons, or just
another 4-pin push button.

● Arduino Mega Microcontroller:​ The microcontroller is fairly robust with
built in over-current protection as to protect against electrical shorts. If
the microcontroller does no longer power on when connected via the
USB cable, please replace with another Arduino Mega Microcontroller
but before replacing, be sure the USB cable is not at fault by replacing
that component first.

● 9V Battery:​ If all of the cells on the array barely brighten when using the
push buttons, the battery is probably dead so please remove the
battery from the sleeve, carefully disconnect the battery terminals and
reconnect a new 9V battery.

6.0 Troubleshooting Operations
● An LED on a memory cell doesn’t light as expected:

1. This LED might be burnt out, please change with another LED to
confirm the problem, then replace.

2. If the LED is not the problem, the battery might be dead so replace
the 9V battery.

19

3. If the battery is not the problem, ensure that all wires are securely
pressed down on the breadboards and try again. Please refer to
Appendix A for wiring instruction.

4. If the problem persists, ensure the Arduino Mega is grounded via the
long blue wire extending from microcontroller to ground on the
array.

● “Refresh” function doesn’t work as expected in the software
1. If there is something wrong with uploading, please check the right

board type and COM port is selected, which should be Arduino
Mega. This will be under “tools” in the Arduino Genuino software.

2. Make sure the code is correct. Sometimes, the code may be changed
by mis-touching on keyboard without consciousness. Close the
Arduino Genuino software without saving the program.

3. Type the right word into the Serial Monitor, which should be
“Refresh”.

● Multiple cells are accessed at once when pressing a single digit and
wordline button

1. Check to make sure the long blue wire from the Arduino Mega is
connected to a ground bus on one of the array’s breadboards.

2. Ensure that the digitline and wordline connections from the Arduino
Mega to the array are properly connected and secure.

3. Check each resistor on each cell to ensure they are all connected
from the gates of each transistor to ground. Refer to Appendix A for
a detailed overview.

4. Always be sure to power the array using one 9V battery. More than
10V will begin to damage the model.

● Trouble uploading “DRAM_Engineers” program to the Arduino Mega
1. Under “Tools” in the Arduino Genuino software, be sure the correct

board is selected, “Arduino/Genuino Mega or Mega 2560”.
2. Under “Tools”, ensure the correct “Port” is selected. You know you

have selected the correct port when the board name from step 1
appears next to the COM number.

20

7.0 Status of Planned Features: Work Breakdown Structure (WBS)
In this section of the manual, each team member will be discussing their
expectations versus what was accomplished in the project.

7.1 Abdulrahman’s WBS Explanation
Appendix B, is where my WBS located and states all of the tasks I was
responsible and working on with my teammates during the academic year.
Main Activity in My WBS Includes:

● Designing of the DRAM Array with Four subtasks:
○ Finalized circuit design
○ Working 8X2 Prototype
○ Finalized the Arduino and programing
○ Finalized the entire model

All of the above tasks in my Activity have been done and they belong in the
section below:

● The first subtask was to design the circuit which implemented all of
the required parts. The deliverable for this task was a fully realized
schematic. The level of completion is 100% on that subtask.

● The second subtask consisted of constructing a prototype which
included building 16 cells in an 8X2 configuration; 8 wordline and 2
digitline and the team ensured it was fully operational and was what
our client asked for. The deliverable for this task was to build the
entire circuit and ensure the functionality of all 16 memory cells in
terms of writing to each one independently. Based on that schematic
we built the entire model. The level of completion is 100%.

● The third subtask was to test the Arduino. The Arduino needed to be
able to take in word and digitline addresses corresponding to a
selected cell as chosen by the user, which will light the LED to show
the state of charging on the Capacitors. The deliverable of this task

21

was to make sure the Arduino could fully control one cell of the
array. The level of completion is 100%.

● The last subtask was to Build and Test which implemented the Array
and Microcontroller together. The Deliverable of this task was to test
the entire system and make sure everything working as expected.
The level of completion is 100%.

7.2 Colby’s WBS Explanation
A requirement of successfully completing the project was that each team
member needed to identify at least one main activity to complete. Below
are my two main activities with accompanying tasks, also shown in
Appendix C. The item lines following each activity denote deliverables.

Main Activities in the WBS:

● Designing the 8X8 DRAM Array
○ Finalized m-bit schematic.
○ Finalized 8X8 DRAM Array schematic.
○ Functioning 8X2 prototype.
○ Functioning 8X8 Array.

● Implementation of the Microcontroller
○ Flowchart displaying desired functionality.
○ Working prototype of code to access an individual cell.
○ Complete software program which can write to individual cells

and also refresh the entire array, digitline by digitline.

All of the tasks above were completed successfully without compromise.
The model accurately simulates the functions of DRAM by allowing the user
to manually select whether to write a “1” or “0” using the toggle switch, then
selecting the desired cell to write that data to by using the external digit
and wordline push buttons. The user can also access the array via
software programmed on the Arduino Mega microcontroller which takes in
a memory cell address and then writes a “1” to the selected cell. The

22

software also can refresh the entire model by entering the command,
“Refresh”, into the Serial Monitor.

7.3 Demetria’s WBS Explanation
For this capstone project, each person in the team was responsible to
complete a WBS with assigned task activities, and my WBS is located in the
appendices section, Appendix D.

My WBS includes two activities and followed by other tasks assignments:

● Design the 8X8 (64 mbit cells) DRAM Array
○ Prototype/circuit Design
○ Testing on breadboard
○ Design the entire 64 mbit cells on breadboards

● Design a Carrying Tray for the 8X8 DRAM Array
○ Measure the full size of the DRAM Array
○ Completed “tray” design for the DRAM Array

In the designing stage of the DRAM array, almost every team member was
responsible to meet and build the array during team meetings. This
required a schematic of the mbits location followed by push buttons and
toggle switch. To view the schematic, please refer to the appendices on
appendix A. Also, testing the hardware of DRAM array was quite difficult yet
minor to fix. We did run into some wire and electrical parts errors, but we
managed to adjust the DRAM array. Overall this main activity is entirely
100% completed, and our client was satisfied of the functionality.

Lastly, designing a carrying tray for the DRAM array did include everyone’s
input to ensure the correct size and usage. At first, our intention was to
build a fitted “carrying case” for the DRAM, but due to time and cost we’ve
decided to make it into a tray instead. Plus, a carrying tray did meet our
team’s specification to make it easier for our client to hold/travel around.

23

Overall this main activity is entirely 100%, and our client was satisfied of the
final design.

7.4 Jinming’s WBS Explanation
My WBS is located in the appendices at Appendix E. Personally, I was
responsible for two main activities with my fellow teammates, which are
listed below:

● Implement Microcontroller
○ Determine functionality
○ Program
○ Ensure functionality

● Design Extra Functionality
○ Design and program a GUI (Graphical User Interface)

For the first activity, implementing the microcontroller was my
responsibility followed by subtasks. We put those actions into a flowchart
which gave us a clear direction to program on Arduino Mega. According
we discussing, we finished programs. There were some problems in syntax
for us in our programming processing. We found some example code on
Internet. And we figured all problems out, and tested functions of our
microcontroller connected to DRAM array after finishing coding. After all of
this, I did a 100% completion level on this task activity.

 For the second part, I tried to find a Arduino library which support the
collection between the microcontroller and PC. I found a library at the first
half of this academic year. But some functions in this library didn’t work so
well. I was not sure this library can satisfy all requirements of GUI. Because
of rebuilding of DRAM array, I estimated time is not enough with potential
problems in developing GUI. I stopped developing GUI. But we still have a
way for user interacting with microcontroller on PC. Users can use the
console in Arduino IDE to make the microcontroller perform functions,
including accessing cells and refreshing.

24

7.5 Zeyu’s WBS Explanation
I was responsible for the circuit design and software code. There were
several different choices when we started working on the circuit design,
because we could not know which one should be the final decision before
we testing. In that case, we spent a lot of time researching and tested the
circuits found in our research to determine a final design.

In Fall 2017, we were initially going to use the operation amplifier to
increase the input voltage from the Arduino Mega to power all of the
electronic components. However, this was a not well thought out idea
because the completed logic of the amplifier and its voltage rails needing
to be higher than the input voltage, this made the circuit not function as
desired. Also, because the amplifier needed such a large positive and
negative voltage source to amplify the already low 5V from the Arduino
Mega, it made no sense to use the amplifier if an external power source
was required use it. So at the end of this semester, we were no longer
considering the operation amplifier as a vital component in our DRAM
array.

In Spring 2018, we had tried to build a prototype before we worked on the
completed DRAM array. When we were doing the prototype, we experienced
many problems because we misunderstood the basic working theory of the
DRAM cell. We used the Arduino to provide the voltage for the DRAM cell,
but there were a over current protection within the Arduino, which means if
the voltage output is directly connected to ground without a suitable
resistance, the circuit would NOT be shorted because the voltage would
shut off due to the over current protection. So between the gate of
transistor and ground, we added a resistor to prevent large floating gate
voltages. Finally, the cell worked perfect and we used the same theory to
do the 64 cell array and connected them with digitlines and wordlines
together.

25

For the software code part, we just developed the basic write function of
DRAM array. We could use the Arduino Genuino Serial Monitor to charge
certain cells automatically by choosing the specific address. Also we could
use Arduino to do the refresh, which would charge the DRAM each digitline
by digitline. Currently, both of my main activities are 100% complete with no
discrepancies.

26

8.0 Conclusion
The purpose of this capstone project was to create an interactive, simulated
DRAM array and to show the operation of how volatile semiconductor memory
works. Our client, Daniel Eichenberger (or Dan), requested this project to emulate
DRAM functionality, such as writing to, reading from, and refreshing the memory
array. Dan is a recruiter for Micron Technology and he wanted our DRAM model
to become a teaching device to anyone interested in computer memory.

Our team has completed and accomplished most of the requirements asked by
Dan, as well as met our own team specifications. We hope Dan will use our DRAM
array model at future career fairs at NAU, showing Micron Technology’s most
profitable product in a way other than just having DRAM chips on display. This
model will be able to show the three basic functions of DRAM to engineering
students interested in pursuing a career with Micron.

During the whole academic year in capstone, we’ve learned so much from one
others creativity, experiences, and knowledge. The team would like to thank Dan
for making time to meet, mentor, and accept our DRAM array model as well as
Micron Technology for providing NAU with a capstone project. We also would like
to thank Dr. David Scott, Dr. Kyle Winfree, Julie Heynssens, and Ashwija Korenda
for all of their guidance and support throughout this academic year. We wish the
best of luck to our team members in their professional careers, and Micron
engineers to continue enhancing memory storage for the future.

Thank you,
DRAM Engineers

27

9.0 References
[1] B. Keeth, J. Baker, B. Johnson, and F. Lin, DRAM Circuit Design: Fundamental
and High-Speed Topics. Hoboken: John Wiley, 2008.

28

10.0 Appendices
Appendix A
Schematic of the 8X8 DRAM Array

29

Appendix B
Abdulrahman’s WBS

30

Appendix C
Colby’s WBS

31

Appendix D
Demetria’s WBS

32

Appendix E
Jinming’s WBS

33

Appendix F
Zeyu’s WBS

Person Primarily Responsible: Zeyu Zhang

Task
Num.

Activity/Task Description Deliverable Other
People

Level of
Completion

1 Hardware (DRAM
array)

This part is the core
part of our project.

the completed
DRAM array

All team 100%

1.1 Design DRAM cell The basic structure
in one cell is 1T1C
and there should be
an 8 by 8 (64 cells in
total) array.

-
-
-
-

Colby,
Jinming

100%

1.2 Assemble DRAM
array

After the DRAM cell
passed all of
requirement test, the
DRAM array will be
assembled by the 64
cells.

-
-
-
-
-

All team 100%

2 Software
(Arduino)

Develop the
controller code
which could charge
the DRAM array
automatically.

the external
controller (Arduino
Mega) with
implementation
code

Colby,
Jinming

100%

3 Robust Board Build an unbreakable
board to hold the
DRAM array, Arduino
and voltage source
(battery).

the completed
DRAM array with an
external controller
and robust board

All team 100%

34

35

