

College of **Engineering, Forestry** & Natural Sciences

Department of Electrical Engineering, Northern Arizona University; Faculty Advisor: Dr. Niranjan Venkatraman

Design Objectives

Background

When our team first started this project, we identified a few key objectives early on to maximize our effectiveness. It was decided that our primary objective for the motor controller would be the capability of handling abnormally high power levels. Secondly, our controller design would require multiple safety factors in order to be user safe. Finally, it would need a user interface that allowed the user insight into the motors status, helping to ensure proper function.

Thanks to the program "Matlab Simulink", we were able to simulate our controller design before constructing it. This saved us a lot of time by allowing us to see the effect of changes without rebuilding the whole circuit.

Simulation Results

Image 3: Gerber File

Image 4: Wave forms returned from simulation showing pulse by pulse current limiting

Electric vehicles are the future of low cost, low emission travel. To complete our capstone requirement we set out to design, build, and test an electric motor controller capable of handling extremely high power levels. This was accomplished by applying our knowledge of electrical engineering principles and research methods. What we achieved, in our opinion, is the most affordable and safest motor controller available today for high power applications.

Design Decisions

Due to the complexity of building a motor controller we had to make many decisions about our design. The most critical decision for our project was whether to use a micro controller or analog control circuitry. Utilizing a design matrix, our team determined that a micro controller would be the optimum choice for this project due to the flexibility programmability would give us. This led us to create a user interface with LEDs because a micro controller made LED control very simple. The enclosure seen in **Image 1** was chosen for its large cooling fins, ample space, and low cost (It was donated by our client).

Acknowledgements

Team MotoCool would like to thank Dr. Venkatraman, our ever insightful faculty advisor. We would also like to extend our gratitude to Dr. Scott, head of the electrical engineering department, and our infinitely patient client Bill Schlanger.

Team Moto-Cool: Ben Rogowitz, Cardon Hakes, Graham Maxwell, Austin Van Der Werff, Khalid Ahmed

Engineering Design

Electric Motor Controller

Quantity	Description	Mfr#	Mouser#	cost per unit	Total Cost
2	MicroController	MSP430F2012TN	595-MSP430F2012IN	2.4	4.8
$\overline{2}$	3.3V line regulator	UA78M33CKCSE3	595-UA78M33CKCSE3	0.6	1.2
1	DC/DC isoltated converter	PWR1308AC	580-PWR1308AC	31.79	31.79
5.	3A gate driver	FOD3184	512-FOD3184	2.72	13.6
1	Hall Effect Current sensor	HASS 600-S		27.5	27.5
$\overline{2}$	Comparator differental	TLC352IP	595-TLC352IP	1.39	2.78
10	10k ohm resistor	293-10K-RC	293-10K-RC	0.15	1.5
$\overline{2}$	10k Thermistor 1%	B57863S103F40	871-B57863S103F40	2.09	4.18
5.	150ohm resistor for opto-coupler	MF1/2DC1500F	660-MF1/2DC1500F	0.16	0.8
20	15ohm resistor gate drive to mosfet	RN65D15R0FB14	71-RN65D-F-15	0.43	8.6
$\overline{2}$	diode 3 amp hold up for current sense	1N5820	844-1N5820	0.26	0.52
10	100uF caps	EEU-TP1V101	667-EEU-TP1V101	0.92	9.2
12	Power mosfets 140A 0.024	IXFK140N30P	747-IXFK140N30P	15.37	184.44
10	Switching diodes 150A 120ns	IDW100E60	726-IDW100E60	5.02	50.2
$\overline{2}$	nand gate	CD40107BE	595-CD40107BE	0.46	0.92
$\overline{2}$	10 pin connector	1725737	651-1725737	5.73	11.46
$\overline{2}$	5 pin connector	1725685	651-1725685	2.9	5.8
4	BusBars Aluminum				
			Total	359.29	

Figure 1: Price list for materials

Image 2: PCB Schematic Layout

Image 1: The main power circuit sitting atop the enclosure prior to mounting.

Over the course of the semester we purchased materials to fabricate our project. **Figure 1** shows an itemized list of materials purchased, the quantity, their part number, and the purchase price.

In designing the controlling circuit we started with a schematic layout shown in **Image 2** which later became what is known as a Gerber file. The Gerber file is what was used to manufacture the physical circuit. This is shown in **Image 3**.

