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I. Executive Summary 
 
In this project, we developed a digital receiver using an FPGA.  We chose to program the FPGA in 

Verilog instead of VHDL so you would be able to extract what we did more easily since they use 
primarily Verilog code.  We also had a choice of Modulation techniques and decided to go with an 8-
PAM (Pulse Amplitude Modulation) because it has a high information density and was familiar for the 
entire group.  When actually completing our code, we divided the code into sections to allow you to be 
able to implement the pieces you choose, and make changes more easily. 

The input to our FPGA is a stream of numbers (created in Matlab) that represent a signal with 8-
PAM modulation, center frequency of 75 MHz, and pulse-shaped using a square wave.  A picture of this 
can be seen in Figure 10 on page 15. 

Programmed into the FPGA is code that begins by downconverting the center frequency to 100 
kHz so that the bandwidth ranges from 0 to 200 kHz.  The signal is then channel selected using band 
pass filters at frequencies:  8.33, 16.66, 25, 33.33, 41.66, 50, 58.33, 66.66, 75, 83.33, 91.66, and 100 kHz.  
After this, the signal is demodulated out of 8-PAM and into an information stream (an estimate of the 
stream of ones and zeroes that were sent).  This information stream can then be converted back into a 
voice using a DAC and outputted using a speaker. 

We have a project website complete with information about the team working on this project, 
as well as general descriptions about what we did. 

II. Background Information  

1. Why is this project Relevant? 
The Receiver we are designing will be implemented in an aircraft or a helicopter. Good 

Communication is critical, especially in the air; for example the pilot needs to know when and where the 

plane can be landed in order to avoid collisions. Furthermore, a military aircraft pilot needs instructions 

for what target to attack or not. Miscommunications in situations like this can easily lead to unwanted 

casualties. Therefore it is important that the pilot is able to switch between frequencies if necessary and 

to have a clear signal on the desired channel. 

What this project is accomplishing is a better overall communications system. Most conventional 

communication is still being done with analog circuitry which is getting outdated. The latest trend in 

technology is moving everything to the digital domain. 

Receivers are an important device in our society since they are major components in products such 

as cell phones, televisions, etc.  Historically, receivers have been constructed entirely out of analog 

devices but with advances in digital technology, large portions of receivers are now accomplished using 

Digital Signal Processing (DSP) technology. 

Using DSP, many of the functions performed by analog electronics can be performed by software.  

The benefit is that software is not affected by temperature, manufacturing defects, physical variables, 

and electronic noise.  The disadvantage is a loss of information when converting from analog to digital 

electronics. 
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2. Analog vs. Digital Filtering  
In filtering there are several notable differences between analog and digital filtering.  The first 

difference is the size and weight difference. Analog filters are bulky; they use up a lot of space and weigh 

a lot because they are mainly made of metals. Analog filters are made of a lot of different components 

that often need soldering. These joints can brake due to vibrations or external force.  Not only can 

analog filters limit space and weight capacities, but they can become unreliable when the equipment is 

under duress. In comparison, digital filters use up practically no space and no weight. Furthermore, it is 

one solid unit, whose interconnects are virtually impossible to brake due to vibrations. 

Another downside of analog filters is that they must be tuned to specific frequencies. If those 

frequencies change then the filters must be tuned or even changed out. Digital filters do not have to be 

tuned, and if the operation frequencies change, then digital filters can be reprogrammed. 

Here is a sample schematic and filter box of an analog filter  

 

Figure 1 Analog filter Box    Figure 2 Analog Filter Schematic 

 

 

An analog filter uses components like inductors and capacitors to physically change the signal, 

while a digital filter will use samples of the signals and perform mathematical operations such as 

addition and multiplication in order to achieve the same results, as shown in Figure 3.  

 

Figure 3 Example FIR filter 
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The advantage of analog signals is that they manipulate the entire wave and all of the 

operations they do are continuous, while digital filters lose some information when sampling. 

However analog components are highly dependent on their surroundings. Factors like heat and 

electro – magnetic interferences will change the properties of the analog components and therefore 

change filter’s performance.  This is not typically a problem while using digital filters except in extreme 

cases. 

 

 

 

 

3. FPGA vs. ASIC 
There are two different chips that could have been put at the core of this digital filter:  a FPGA or an 

ASIC.  Field programmable gate arrays (FPGAs) have wider potential than application-specific integrated 

circuits (ASICs) because they can be programmed in the field even after customer installation, allowing 

for future upgrades and enhancements. FPGAs contain programmable logic in a hierarchy of 

reconfigurable interconnects which allow them to perform complex combinational functions as well as 

basic logic gates. Figure 4 below is the Cyclone II FPGA chip being used for this project. 

 

Figure 4 Cyclone II chip 

The chip above is being used along with the DE2 development board (picture below). The board 

makes testing and interfacing the chip easier. 
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Figure 5 DE2 Development board 

 

ASICs are major competitors with FPGAs.  The difference between the two is that ASIC is 

designed with one purpose in mind.  When it comes out of the manufacturer its function is already fixed 

and cannot be changed. It has no excess hardware, which makes it cheaper. Therefore, ASICs are better 

for high volume applications. Below is an example of a sample ASIC chip. 

   

Figure 6 Sample ASIC Chip 

 

ASICs do not have any external hardware like the FPGA does and therefore cost less per unit 

then and FPGA.  However if there is a mistake in the engineering design or a change in the 

specifications, ASICs cannot be changed to reflect these new designs which forces the engineer to 

redesign the entire chip. In comparison FPGA can be easily reused just by adjusting the software for it.  

 

 

 

Table 1 below summarizes the differences between FPGA and ASIC 
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Table 1 Comparison between FPGA and ASIC 

 FPGA  ASIC  

Cost per capita  High  Low  

Engineering cost  Low  High  

Reconfigurable Hardware  Yes  No  

Volume  Low  High  

 

III. Problem Overview 

 
Figure 7 Project diagram 
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Fig 7 above shows the top system level diagram for this project.  The upper part of the diagram 
is a transmitter. Audio is passed through a microphone, converted to a wave, modulated and passed via 
an antenna to the receiver. The receiver’s antenna will pick up the signal and pass it to an analog portion 
which will consist of filtering, amplification and conversion to the digital domain. The last blocks will be 
done by the FPGA and will consist of demodulation, or extracting the information from the signal. 
Further processing includes channel selection, filtering amplifications; and finally outputting an audio 
wave to speakers or headphone set. 

 
 

IV. Specifications 
 

We received a specifications document from our client giving details about what was required in 
the finish product. The entire document can be found in Appendix V Client Specifications 

 
We were tasked with developing a digital receiver using an FPGA, with the main focus on developing 

topology and working VHDL/Verilog code to meet the specifications. 

The FPGA needed to be interfaced with an ADC converter for input, and a DAC converter for output.  

The FPGA also had to be interfaced with the user for channel selection 

We were given a requirement that the channel frequency of the input had to be 75 MHz And the 

external receiver bandwidth had to be 200 kHz. 

The following are Additional requirements that the client wished us to complete. 

 Digital signal processing requirements 
o Handle two different channel spacing 

 25 khz channels 

 -6 dB maximum @ ± 10 kHz 

 -40 dB minimum @ ± 17 kHz 

 -60 dB minimum @ ± 22 kHz 
 8.33 khz channels 

 -6 dB maximum @ ± 2.78 kHz 

 -60 dB minimum @ ± 7.37 kHz 
o Audio leveling 

 The output should include automatic level control for less than 3 dB 
audio output variation 

o Dynamic range 
 100 dB, of which 40 dB should be accomplished in the FPGA 

o Modulation 
 Choice of amplitude and/or frequency modulation 

 Other requirements 
o Code language 

 Choice of Verilog or VHDL--Verilog is preferred 
o Operating temperature range: 

 -30°C to +85°C 
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V. Trade offs  

1. VHDL vs. Verilog 
 The first trade-off that we came across was an option given to us by the client.  This was 
whether to program the FPGA in VHDL or Verilog.  We chose to go with Verilog, because our client uses 
it in their designs and thus would be able to understand what we were doing much easier.  This would 
allow the client to be able to make changes to modules of our code much easier. 

2. Full-range sampling vs. Selective sampling 
 The next decision that we were going to have to make was how we were receiving our 
information.  This came down to two methods:  Full-range sampling and Selective sampling.  Selective 
sampling is when you a signal is at the IF frequency (in our case 75 MHz) and then downconverted and 
sent through the ADC.  This allows the FPGA to use smaller frequencies, and thus less logic in the FPGA.  
The problem with this approach is that it requires external components.  The other choice, full-range 
sampling, is where the signal at the IF frequency is sampled using an ADC and the results of this are sent 
straight to the FPGA.  We felt that full-range sampling was more in line with what the client was looking 
for in this project. 

3. Finite Impulse Response (FIR) vs.  Infinite Impulse Response (IIR) 
An Ideal filter is unstable, and needs infinite numbers of samples therefore it is impossible to 

implement. Two types of digital filters are FIR and IIR.  IIR filters have a feedback loop which will address 
the infinitive amounts of sampling however delaying the single a few times this filter does not produce 
constant delay at the output which needs to be adjusted for. While a FIR filter may need more delays 
and is a higher order computation however it will produce a constant delay in the output.  Refer to the 
Frequency Response Plots in Appendix I. The constant delay is indicated by the linear phase in the pass 
band region. 

 
How and FIR filter operates  

 
Figure 8 Fir filter schematic 

The above figure is part of the Finite Impulse Response filter schematic implemented into the FPGA.. 
h(n) is referred as “taps”. x(n) is the sampled signal.  The filter operates by multiplying different samples 
of the signal by the tap value and then summing the result  
When you pass a signal through a filter the output is ideally a new signal without the unwanted or 
filtered frequencies. The filter response in the frequency domain shows what frequencies are passed 
wherever the wave is equal to one.  
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Design Process 
This section summarizes the process flow of a two-way communication using the Digital receiver we 

have designed. 

1. Information Generation  
This will be the voice of a pilot or control tower person talking to a microphone. Since 

implementing this is outside our scope we used a random generation of a binary stream of 

numbers. 

 

2. Transmission  
In this section the information is encoded, applied to a carrier wave and sent via an antenna.  

The encoded part is needed to limit the effects of noise in the information; in our case, we use 

an 8pam modulation.  It is normal to see a difference of 100 dB between transmitted signal and 

received signal, in order to ensure that the signal reaches the receiver it needs to be modulated 

with a carrier wave, for this project the carrier is a sinusoidal centered at 75 MHz 

 

3. Channel  
Here the signal is in transition from the transmitter, travels through a medium (usually air), and 

gets received in the receiver.  In this transmission, the signal endures various deformations due 

to interference frequencies , reflections, thermal noise generated by outside influences and 

even its own components.  In order to simulate this we use an Added white Gaussian noise 

(AWGN) 

 

4. Analog to Digital transformation 
In this section the received wave is converted from an analog wave to digital by sampling.  This 

project uses an ADC that will take samples at a frequency of 300MHz 

 

 

5. Down Conversion  
In this section, the signal is multiplied by the carrier wave.  The results will be a signal that has 

two frequency components. One centered at the channel frequency (low frequency component 

) and one centered at twice the carrier frequency (high frequency component) the  high 

frequency component will be filtered using a FIR filter. 

 

 

6. Channel Selection  
Here the FPGA will filter all frequencies except the desired channel frequency. This is done by 

the use of FIR filters, The FIR coefficients will be stored in memory and the switches on the DE2 

board will determine which filter is applied. 

 

7. Demodulation 
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This section just reverses the modulation and outputs an information sequence consisting of the 
binary sequence that was sent across the medium. 

8. Voice reconstruction 
The binary sequence is sent through a Digital to Analog (DAC) to reconstruct the wave back to 
the voice wave. 

 

 
VI. Design Details 

 
Digital Signal Processing (DSP) is used in our project to extract the information out of a modulated wave.  
In our project, we do this using an FPGA.  The signal that we receive is in the form of a string of ones and 
zeroes encoded into a wave with an IF frequency of 75 MHz, using an 8-PAM modulation technique, 
which is pulse shaped using a square wave.  A picture of this can be referenced in Table 2 (page 14).  The 
first thing the FPGA does upon receiving the wave is down conversion. 
 

1. Downconversion 
In order to downconvert a signal, the signal needs to be multiplied by another wave form at the 

in order to change the nature of the signal.  Mathematically what this does is: 

cos(2π*f1)*cos(2π*f2) = cos(2πf1 – 2πf2) + cos(2πf1 + 2πf2) 

This means that if f1 and f2 are equal, then you will get: 

1 + cos(2*(2πf)) 

Which equals: 

(cos(2πf))2 

This makes sense considering that you are essentially multiplying a wave by itself. 

The purpose of downconversion is to bring the center frequency down to make the signal easier 

to process.  This process is not completed yet though.  In order to complete the process, the signal 

needs to filter out the cos(2πf1 + 2πf2).  A low pass filter will do just fine for this, and will leave just 

cos(2πf1 – 2πf2) as a result.  This creates a new wave that has a frequency f3 = f1 – f2 and looks as 

follows:  cos(2π(f1 –f2)) = cos(2πf3). 

2. Channel Selection 
 For the next portion, we had to be able to select a channel.  A channel is a specific frequency 

that is listened to in a specified bandwidth to the exclusion of all of the other channels.  This could be 

compared to listening to stations on an FM radio:  The listener wants to listen to one station at a time, 

not all at once. 
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 In order to select a channel, the signal needs to be filtered by a band pass filter.  This filter just 

filters a specific frequency to the exclusion of all of the others.  Refer to the Filter Design section for 

more details. 

3. Demodulation 
 At this point the signal still looks like the waveform in Figure 1, but at a lower frequency.  In 

order to properly define how we demodulate, we first have to define how the wave is created in the 

first place. 

To create the wave, we had to turn the voice into binary, and then took every three bits and 

represented this as a symbol as represented in table 2 below.   

Table 2 8 pam symbol mapping 

Bit block 8pam symbol 

0 0 0 -7 

0 0 1 -5 

0 1 0 -3 

0 1 1 -1 

1 0 0 1 

1 0 1 3 

1 1 0 5 

1 1 1 7 

 
The right column represents the amplitude of each of the symbols.  The difference between the positive 
and the negative is just a 180 degree phase change.  We decided to create this using a square wave, but 
different combinations can be created.  At this point, the transmitter should have something that looks 
like what we have below: 
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Figure 9 Pulse shaped symbol mapping 

 After this the carrier wave (in our case cos[2π*75000000])is then multiplied by this signal 
creating something like what we have below: 
 

 
Figure 10 Transmitted signal 

 Now, in demodulation we essentially reversed this process.  The first step of this process is to 
get rid of the carrier wave.  This can be done by downconverting (see downconversion section above for 
more details) the carrier wave down to zero.  If you multiply this wave by the carrier wave again and 
then filter out the high frequency component:  cos(2πf1 + 2πf2).  This will get us back to a signal very 
close to the square wave and will look very similar to Figure 3.   
 In order to get our symbol values back, we need to sample this wave form and round the result 
of that to the nearest symbol. 
 At this point we should just have a series of symbols; received in the order they were sent.  The 
symbols can be converted using the same table we used to create the square waves.  When the 
information is converted to binary, then the signal can be converted back into a sound wave. 

4. Filter Design  
 

In this project, two types of filters have been used. The first are Band Pass Filters (BPF), and the 
second are Low Pass Filters (LPF).  Band Pass Filters are used to select a specific frequency range and 
block the rest.  Low pass Filters are used to block high frequencies while allowing all low frequencies 
below a certain cutoff frequency. 

In our project, both set of filters are implemented using Finite Impulse Response filters (FIR). For 
more details about FIR filters and their comparison to Infinite Impulse Response (IIR) filters refer to 
Trade off portion of the Design details section. 

The band pass filters are used in channel selection and are designed using an Equal ripple 
approach.  The low pass filters were designed using a Kaiser Windows approach.  Both of these are 
explained below. 
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a. Band Pass Filter Design    

 
Step 1:  Use specifications to form the Frequency response. 
 
Figure 11 below shows the general frequency response limits that each band pass filter has.  
 
 
 

 
Figure 11 Band Pass Filter Specification Frequency Response  

Table 3 below explains what each parameter is and what parameters we used in order to meet our 

specifications. 

 
 
Table 3 Band pass filter specifications 

Unit  Description   Value used for 25kHz 

channel spacing  

Values used for 8.33 

kHz channel spacing  

Fs (kHz) Sampling frequency 800 800 

Apass  
 
(dB) Pass band ripple  1 1 

Astop1 (dB) Stop Band attenuation  65 65 

Astop2(dB) Stop Band attenuation 65 65 

Fstop1  (kHz) Stop frequency  Channel -17  Channel -7.37 

Fstop2 (kHz) Stop frequency  Channel +17 Channel +7.37 

Fpass1(kHz) Pass frequency Channel -10 Channel -2.78 

Fpass2(kHz) Pass frequency  Channel +10 Channel +2.78 

Fpass1-Fpass2(kHz) Pass band region 
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Where channel is the channel frequency ex: 25 
kHz, 50 kHz, 75 kHz…200 kHz, 8.33 kHz, 16.66 
kHz…200 kHz 

Attenuation is how much power is changed in the signal, which means that the dB values are negative.  
 
The specifications require a 60 dB attenuation in the stop band at +/- 22kHz, however the filter gradually 

gets to the value specified by Astop1 and Astop2.  In order to make the slope in the transition band more 

acute, the attenuation limit is increased by 5 dB and the stop band frequencies were chosen at +/- 17 

kHz away from the channel frequency. 

 

The sampling frequency was chosen at 800 kHz to minimize the order of the filter. The higher the 

sampling frequency, the more the filter has to reject specific frequencies. 800 kHz was chosen in order 

to have at least 4 samples per period at the highest channel frequency (200 kHz). 

 

 
Step 2: Converting Frequency response to time response   
 
In this step, the filter coefficients or taps are calculated using an Equiripple method. In this method, the 
ideal time response is approximated using the Ramez Exchange algorithm. The next few paragraphs will 
discuss basic theory of what the Ramez Exchange algorithm does.  
 

In the following example the channel frequency is 100 kHz all other parameters are as in table 3 

 

An ideal filter Frequency response will look like figure 12 below. Notice that an ideal filter will have both 

a negative and positive components.  This is because cosine is an even function. 

0-Fstop1(kHz) Stop Band region 

Fstop2-Fs/2  (kHz) Stop Band region 

Fsto1-Fpass1 (kHz) Transition region 

Fpass2- Fstop2 (kHz) Transition region 
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Figure 12 Magnitude Response for Ideal BPF 

 
The first step of the algorithm is to transform the Ideal frequency response to time response. This is 
done by applying the Inverse Fourier transform  
 

 
The result is a sync function plotted on the graph below (Figure 13) 
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Figure 13 Ideal Filter Impulse Response 

 
An ideal filter uses both past and present values, which will make the filter unstable. Furthermore the 
sync function spans from negative infinity to infinity, which makes it impossible to implement.  
The Ramez Exchange algorithm will approximate the above impulse response by solving the following 
system of equations: 

 
Where W(k )  is the weighted ripple amplitude at frequency k . W(k ) is a ripple weighting function 
defined by the parameters listed . H(wk) is the frequency response and hn  is the impulse response  
 
The result is then shifted, in order to use only past values. This makes the filter causal and stable. The 
result is plotted on Figure 14 below  



20 
 

 
Figure 14 Impulse response 

 
Step 3. Convert Impulse response to frequency response.  
   This is done by applying the Fourier transform  

 
 
The result magnitude and phase are plotted on Figure 15 below 
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Figure 15 Magnitude and Phase responses 

 
 
This graph helps evaluate how good of a filter was designed and weather it meets the client 
specification. 
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b. Low Pass Filter Design  

 
Step 1: Use specifications to from the Frequency response  
 
Figure 16 below shows the general frequency response limits that each low pass filter has.  
 

 
Figure 16 Low Pass Filter Specifications 

Table 4 below explains what each parameter is and what parameters we used  

 
 
Table 4 Low pass filter properties 

Unit  
Description   LPF1 LPF2 

Fs  (kHz) 
Sampling frequency 300 000 800 

Apass  
 
(dB) 

Pass band ripple  1 1 

Astop (dB) 
Stop Band attenuation  90 90 

Fstop  (Hz) 
Stop frequency  600 200 
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Fs for the LPF1 Is the same as the external ADC speed 300 MHz in order to filter the high frequency 

component after down conversion. The reason why the transition region is so large is because the 

frequency being filtered is centered at around 150 MHz. For the second LPF however the sampling 

frequency is the same as the one in the channel selections in order to guarantee a bandwidth of 200 

kHz. 

 

 

Step 2:  Converting Frequency response to time response   
Below is a graph of an Ideal Frequency response for and LPF filter. 

 
Figure 17 Magnitude Response for Ideal LPF 

The first step of the algorithm is to transform the Ideal frequency response to time response. This is 
done by applying the Inverse Fourier transform  
 

Fpass(Hz) 
Pass frequency 5000 250 

0-Fpass  (Hz) 
Pass Band region 

Fpass -Fs/2(Hz) 
Stop Band region 

Fpass-Fstop (Hz) 
Transition region 
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The result is a sync function plotted on the graph below (Figure XX) 
 

 
Figure 18 Ideal Filter Impulse Response 

 
 
 
Next, the Impulse response is multiplied by a window function. 
The window being used is called a Keiser window. Defined by the following equation: 
 
 

 
 

The function is plotted below.  For this example we used  of 80 (order of 80). In this case the ideal 

response is shifted first in order to make a casual filter. 
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Figure 19 Keizer Widow for different  

 

Above is the Kaiser Window Function for different alpha values 

 

The results of multiplying the two functions together and is plotted below in Figure 20 
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Figure 10 Impulse Response 

 
Step 3:  Convert Impulse response to frequency response.  
   This is done by applying the Fourier transform: 

 
 
The resulting magnitude and phase are plotted on Figure 21 below  
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Figure 11 Magnitude and Phase Responses 

 

This graph helps evaluate how good of a filter was designed  

5. Programming 
 When programming the FPGA, all of the above concepts had to be incorporated into the code.  

We broke the code up into sections much like above, so the client could see which block of code goes 

with what, and can change one of the modules without having to change the entire code. 

 In the downconversion section, we read in a text file consisting of one period of the carrier wave 
and multiply this by the bits entering the FPGA.  The result of this is sent through a low pass filter with 
its taps stored in a lookup table on the chip and are convoluted with the incoming data. 

In the Channel select portion, the taps for this filter are also in a lookup table on the chip and 
convoluted with the data, but here the code checks which switches are selected using a binary code for 
the first 4 switches.  The code ranges from [0 0 0 0] to [1 0 0 0] (numbers refer to the switches on the 
board, 1 for an “on” position and 0 for an “off” position). 
 In the demodulation section, the downconversion is implemented just the way it is explained 
above. In the sampling portion, the wave is sampled every 50 bits, and is averaged to get the result.  In 
the symbol conversion portion, the signal is sent through a case statement, 4 bits at a time.   
 The result of this is outputted from the FPGA and can be reconstructed back into a sound. 
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6. Sound reconstruction  

 

Figure 12 I/O for Codex 

The DE2 board provides high-quality 24-bit audio via the Wolfson WM8731 audio CODEC 
(enCOder/DECoder). This chip supports microphone-in, line-in, and line-out ports, with a sample rate 
adjustable from 8 kHz to 96 kHz. The WM8731 is controlled by a serial I2C bus interface, which is 
connected to pins on the Cyclone II FPGA.  A schematic diagram of the audio circuitry is shown in Fig 12 
and the FPGA pin assignments are listed in Table below: 
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Figure 13 Pin-out for Codex 

 

Figure 14 Codex Hardware diagram 

VII. Testing  
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The written code will simulate a transmitted signal, by generating a random sequence of binary 
values. A square wave will be created from the binary signal, and that signal will be multiplied 
by a carrier frequency. We then simulate a channel by adding a white Gaussian noise. 
 
The transmission testing code can be viewed by referring to Appendix II: TX Matlab Code.docx.  

 
Down conversion 

 

For the down conversion section, we have Verilog code that will create a stream of data 12 bits 
long, and convert it into a decimal value. We then send that data through 2 programs, one 
Matlab, and the other ModelSim. Matlab will then down convert the signal, and display a wave, 
based on the data being input. For the ModelSim, the data will be sent through the Verilog 
down conversion code, and that will subsequently output a wave. We then compare the wave 
from Matlab with the wave from ModelSim, to verify that our Verilog code works. We could not 
successfully run the data through the Verilog code as we did not have sufficient time to address 
an error with the Verilog code. For more information on the code, refer to Appendix III: 
Verilog.docx. 

 
Filtering 

 

The testing for the filter is incomplete due to the fact that the program we compiled uses more 
memory than the FPGA (Field Programmable Gate Array) can handle. Currently we have the 
capability to generate, modulate and send information on multiple channels simultaneously. 
The filters can be tested by convolving the simulated received sequence with the filter tabs, 
however we were not able to run the signal trough the FPGA and therefore we could not 
compare them to the Matlab simulations. For more information on the code, refer to Appendix 
II: TX Matlab Code.docx. 
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VIII. Results  
 

1. Transmission Code 

 
To view the transmission code please refer to the Appendix I: TX Matlab Code.docx  
The actual Matlab file and generated files by it are combined into the file Transceiver.  
 
Figure 25 below shows what an example of what the transmission code will do. 
 

 
Figure 15 Info pulse, Sampled TX signal, Sampled RX signal 

 
First, the code will generate a binary sequence of zeros and ones, simulating the information sent across 
the radio. That sequence will be sent 3 bits at a time using 8pam modulation. For more detailed 
information on the modulation technique being used, please refer to the section: Design Details. 
 
The top graph in figure 25 shows the information sent in rectangular wave form, where the width of the 
pulse is 1000 symbols long. In other words each value will repeat 1000 before moving to the next one. 
 
The Middle graph in figure 25 represents the transmitted signal. This signal is achieved by multiplying 
the square signal with the carrier wave.  The carrier wave is a cosine wave with frequency of: 
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f = fc -BW/2 + channel 
 
Where fc is the center frequency of the Carrier wave, in our case 75MHz.  
BW is the band width of the signal. In our case BW = 200 kHz, and channel is the specific channel 
frequency the receiver is listening to.  The Channels are multiples of 8.33 kHz or 25 kHz bounded within 
the bandwidth. This way the transmitted signal will be centered at 75 MHz, varying to +/- 100 kHz and 
the exact distance from the 75 MHz will be determine by the channel frequency.  The signal is 
represented in a discrete form and not continues. The sampling rate at which it is displayed is fs = 300 
MHz.  This is the reason why the wave is in a bowtie shape.  The number of points displayed per period 
is fs/f. Since this is not always an integer value there will be an unequal number of samples from period 
to period, causing the amplitude of the wave to be displayed screwed. 
 
The final wave is a simulation of the signal seen at the receiver end.  The wave here is much more 
random since it has noise added to it. The noise has a constant spectral density (has equal power in all 
frequencies) and a Gaussian distribution of amplitude with sigma = 0.1 and on offset (mean) of 0, in 
other words the value of the noise follows a bell curve. 

 

2. Channel Selection  
 
The filters designed are FIR or Finite impulse response filters.  The FPGA implements it by delaying the 
input signal, multiplying it by a tap value and summing all the results. For further information on how an 
FIR filter operates refer to Design Approach section. 
 
The band pass filters were designed by an Equiripple technique with density factor of 20. In comparison 
to Windowing techniques this method will optimize the order of the filter. This is possible by employing 
Ramez exchange algorithm to approximate the impulse response of an ideal filter.   
 
The filters will operate on a sampling frequency of 800 kHz 
All the filters will have an approximate attenuation of 65 dB in the stop band region and a linear phase in 
the band pass region  
 
The filters were designed to minimize the order of the filter for the given specifications which for the 25 
kHz channel spacing, the number of taps were 242 and for the 8.33 kHz spacing, the number of taps 
were 369. 
 
Each filter frequency and time response is listed in Appendix III: ImpulesandFrequencyResponse.docx. 
The code and output files can be accessed from FilterDesign.zip and the Filter taps are listed in Appendix 
IV ChannelFilterTaps.xlsx 
 
 

3. Low Pass Filtering  
 

There were two low pass filters designed.  Both of them use the Kaiser Window method. For information 
on how the Keiser window method operates refer to the Design Approach section.  The first filter will 
takes the signal after demodulation to remove the high frequency component; the signal is then down 
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sampled and passed through the second low pass filter which will ensure that the band pass is limited to 
200kHz.  The reason why those filters are separate is because at high sampling rates it will take around 
8000 taps to implement the same functionality.  This way we optimize the filtering capacity without 
exhausting the memory of the FPGA.  
 
The first low pass filter is needed to preselect the input wave. This filter will operate on the same 

sampling frequency as the external ADC which is 300MHz. The filter will mainly pass frequency below 

600 kHz and it will have a transition band until 5 MHz See Appendix III:  Impulse and Frequency 

Response for frequency response. This filter may does not have a sharp transition as the channel 

selection filters because it needs to filter frequencies much farther apart. The filter is targeting to filter 

the high frequency component result from demodulation which is center at 150 MHz and therefore fast 

transition band is not needed.  The filter has an order of 271 and a stop band suppression of -90dB. See 

Appendix III for Frequency response graph.  

The second low pass filter will ensure that the frequency will be within the Bandwidth specified.  The 

filter operates on a sampling rate of 800 KHz, has an order of 81 with pass frequency of 200 kHz and 

stop frequency of 250 kHz and a stop band suppression of an additional -90dB. This filter has much 

sharper transition band of 50 kHz, in order to eliminate any interfering frequency close to our 

transmitted signal. 

4. User Interface 

 
The user interface is very simple. As it is made specifically for the development test board, the program 
may have to be changed when actually placed into production. 
 
The first control uses four of the on-board switches. The switches allow the user to select the channel 
they wish to listen to. Channel selection on the switches is done in binary. For example, if the user 
changes the switches to off, on, on, off, then the user would be listening to channel 6. The program also 
displays the current channel using the seven-segment display located on the board itself. 
 

5. Website 

 
A website was created to publish information regarding our project to the public. Currently, the website 
can be found at the following link: 
 http://www.cefns.nau.edu/Research/D4P/EGR486/EE/10-Projects/Wulfsberg/ 
The website contains general information about our project, including design, short biographies of the 
team members, and information regarding the undergraduate symposium.  
 
Website Development 
 
The website itself was developed by using a combination of hand-coding and Adobe Dreamweaver CS4 
& CS5 beta. The general layout of the website is based on the layout of the College of Engineering, 
Forestry, and Natural Sciences’ website (http://cefns.nau.edu). The color scheme was changed to a 
darker color of black and gold. 
 

http://www.cefns.nau.edu/Research/D4P/EGR486/EE/10-Projects/Wulfsberg/
http://cefns.nau.edu/
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Once the layout was created, it was converted into a template using the template feature in 
Dreamweaver. Then each page was created based on that template, and the appropriate 
information was added to the page. 
 
Undergraduate Symposium  
 
Our team also participated in CEFNS’ Undergraduate Symposium on Friday, April 23rd, 2010. During the 
symposium, our team presented our topic to a group of professors and fellow peers at 10:00am. The 
presentation lasted about 30 minutes, and was considered a huge success by us. Later that day, our 
team also held a poster session, in which we presented a poster containing information about our topic. 
Both the presentation and the poster are attached to this document in Appendix 7 and 8. 

 
Problems Solutions  

Memory limitations  

In retrospect, there are several ways to avoid running out of memory on the FPGA. First, one could 

simply use an FPGA with more on chip memory, or use an external memory to store the filter taps. 

However, this will drive the cost of the product higher.  

Another solution would be to use Infinite Impulse Response filters. IIR filters require less taps than FIR 

filters, however they do not generally have linear phase in the pass band. This causes problems for the 

modulation chosen, since the modulation is dependent on the phase.  For example, a symbol equal to 5 

has the same magnitude as a symbol equal to -5 when modulated.  The only difference is a phase 

change of 180 degrees. There are two ways to approach this new problem, first a modulation can be 

chosen such that the phase will be irrelevant, such as amplitude modulation sent with the carrier 

frequency. The current 8-pam modulations being used can be modified to include only positive values by 

adding an offset. This way the values transmitted will be 1, 3, 5, 7, 9, 11, 13, and 15. This way the phase 

of the signal will be irrelevant when the symbol is demodulated.  If the modulation cannot be changed, 

there is a second approach, correcting for the phase. Since it easy to determine the phase of a digital FIR 

filter (phase is plotted in Appendix I) an all pass filter can be design to approximate linear phase. An all 

pass filter has the same number of poles as zeros placed in reciprocal manner around the unit circle. An 

example of one pole one zero is shown below in Figure 26. The x indicates a pole and o indicates a zero. 

 

Figure 16 Pole Zero Diagram 
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This filter will pass all frequencies equally, because the pole and zero cancel each other out, however it 

will change the phase of the signal passed. 

A third option is to calculate the filter taps when the channel is selected. The channel selection filters 
have the same amount of taps within the same channel spacing. The filters have the same number of 
poles and number of zeros, and the shape the poles and zeros take stays the same, the filters differ from 
each other by rotating the poles/zeros around the origin. In such a case, the FPGA will need to store only 
two filter taps, one for the 25 kHz channel spacing and one for the 8.33 kHz channel spacing, those taps 
will be used as a base to calculate the taps for the filter desired. Although mathematically sound, this 
method may have some practical issues. The FPGA will need to allocate sufficient resources to calculate 
the filter taps, each time a channel is changed. These transition calculations will have to happen very 
fast and errors may occur depending on the stress operation of the FPGA. Furthermore, storing all the 
taps on memory allows for more dynamic overall process. 

6. Testing  

a. Transmitter testing 

The transmission simulations created a waveform designed to simulate a signal sent into the 
digital portion of our project. The first step was to create a Matlab file that creates values 
representing a sinusoidal wave. This wave is a representation of the wave that would be 
received from an external circuit. The values are then converted into binary format and then 
saved into a text file. This file is then transmitted into our receiver. 
 

b. Receiver Testing   
 

We wrote Verilog code that reads the text file created in the transmission section. We named 
this code Convert.v. The next code written is named Demod.v, which performs down 
conversion, low pass filtering, sampling, channel selection and wave reconstruction. Demod.v is 
integrated to receive the text file from Convert.v. 
 

c. Down conversion  
 

We managed to write the down conversion code, but were not able to test it, as we 
encountered some coding problems with the test bench we wrote. Therefore, this portion does 
not have any simulated results. 
 

d. Low pass filtering 
 

We were unable to fully test the low pass filter, as the DE2 board we used did not have enough 
memory to perform the necessary operations. This portion therefore does not have any 
simulated results. 
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e. Sampling 
 

Sampling involves taking a stream of binary data, converting it into 4 bit binary digits (3 bits 
data and one bit a signed bit) and then using the 8 – PAM (Pulse Amplitude Modulation) 
method to convert the data from values ranging from 0 to 7 into values of -7, -5, -3, -1, 1, 3, 5, 
7. The data below reflects a test performed. 
 
Stream of data input 
 

101111000001010000111110101011011101; 
 
Data separated into 4 bit binary 
 

101 111 000 001 010 000 111 110 101 011 011 100; 
 
 
Results of data after 8 - PAM symbol conversion 
 

101    5  =   3 
111    7  =   7 
000    0  =  -7 
001    1  =  -5 
010    2  =  -3 
000    0  =  -7 
111    7  =   7 
110    6  =   5 
101    5  =   3 
011    3  =  -1 

011    3  =  -1 
100    4  =   1 
 
 

f. Wave reconstruction 
 

We were not able to perform wave reconstruction as… 
 

7. Codex Implementations  
Unfortunately we did not got as far in the project in order to implement the codex. 

 

IX. Budget 
 

The budget for our project consisted of Component Budget, comprising of components we 
needed, and Time Budget, comprising of the man power put into this project, with regards to 
time. 
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1. Components 
 

We initially decided to design the analog circuitry to prep the data that would be sent into the 
Digital part of our project, but after research we determined that the Analog section was not 
necessary, and was not in the scope of the requirements handed to us by our client. Due to this 
decision, we did not need to purchase any components, as the necessary components needed 
to implement our project were made available to us by Northern Arizona University. 
 

2. Time Budget 
 

For the time budget of our project, we split it into 4 quarters, spanning throughout Fall 2009 
and Spring 2010. 
 
For the first quarter, we established communication with our client and attained the 
requirements for this project. We spent the majority of this quarter on technical research, 
where we went over the general requirements to figure out how we would approach this 
project. We then did individual research to have a solid understanding of the project as a 
whole. Figure x1 is an overview of activities performed throughout the first quarter. 
 
Table 5 The first Quarter 

1st Quarter 

Name Time spent 

Client Communication 5 hours 

Technical Research 
(overall) 

45 hours 

Brainstorming 14 hours 

Documentation 20 hours 

Total 84 hours 

 
 
 
 
For the second quarter, we did some research to determine if we would need to purchase any 
components. We spent most of this quarter doing a more detailed technical research. We 
looked at methods to implement our ideas into the project. We also ran systems level 
simulations of the transmitter section of our project. Figure x2 is an overview of activities 
performed throughout the second quarter. 
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Table 6 The Second Quarter 

2nd Quarter 

Name Time spent 

Parts Research  
 

5 hours 

Technical Research 
(detailed) 

30 hours 

Systems level 
 Simulations 

15 hours 

Documentation 25 hours 

Total 75 hours 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For the third quarter, we implemented our design plans. We spent a substantial amount of 
time writing up the code for the digital section of our project in verilog form. We started with 
the filter designs and updated transmission simulations for our project. We then performed 
some research for ideas on designs as well as necessary content for the website. . Figure x3 is 
an overview of activities performed throughout the second quarter. 
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Table 7 The third Quarter 

3rd Quarter 

Name Time spent 

Verilog code 
 

120 hours 

Filter Design 5 hours 

Transmission  
simulation 

48 hours 

Documentation 30 hours 

Website 80 hours 

Total 283 hours 

 
 
 
 
 

For the fourth quarter, we made adjustments to our filter design and ran simulations to ensure 
that the updated design was functional. We completed the team website by implementing the 
design ideas and inputting content. Testing was performed for the individual modules of our 
design. We prepared for the conference by making a poster entailing the specifics of our project 
and also making a presentation to verbally communicate the concept of our project to an 
audience comprising of technical and non – technical people. Figure x4 is an overview of 
activities performed throughout the second quarter. 
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Table 8 The fourth Quarter 

4th Quarter 

Name Time spent 

Filter Design 68 hours 

Transmission  

Simulation 

5 hours 

Website 60 hours 

Testing 150 hours 

Documentation 78 hours 

Conference 

Preparation 

32 hours 

Total 393 hours 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Throughout the execution of this project, we kept up with documentation, writing 
requirements reports, client status reports, team memos, team agendas, and team biweekly 
reports. This was for the purpose of staying on schedule with the project and keeping our 
professor as well as the client well informed about our progress of the project. 
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X. Research 

 
 
Our team used a variety of sources for research. Most of our research was done using the internet, and 
can be found in Appendix X.  We also used many professors here at NAU, including Dr. Paul Flikkema, Dr. 
Sheryl Howard, Dr. Elizabeth Brauer, Dr. Niranjan Venkatraman, and Dr. Phil Mlsna 
 
Meeting with Professors: 

 
Dr. Flikkema 
 Dr. Flikkema’s specialty is in networked communication and computation systems.  Dr. Flikkema 
helped lead us along the right path, including his suggestion that we complete a simulation in Matlab.  
 
Dr. Howard 
 Dr. Howard’s specialty is communication systems, and she proved to be a valuable resource in 
developing our digital filter.  
 
Dr Brauer 
 Dr. Brauer teaches both of the FPGA classes here at NAU.  She helped us convert our ideas and 
math we had on paper to a VHDL/Verilog programs. 
 
Dr. Venkatraman 
 Dr. Venkatraman helped us with understanding the fundamentals about Automatic Gain Control 
(AGC), which we ultimately did not use in this project. 
 
Dr. Mlsna 
 Dr. Mlsna’s specialty is digital signal processing, and like Dr. Howard, was invaluable in the 
development of this project.  He expanded on what we learned from Dr. Howard and gave us several 
different options at approaching our project. 

 

XI. Conclusion 
 

This team consisted of individuals who were fascinated by the challenge set forth by the project 
requirements. We took on this project with no experience of signal processing, but were confident that 
this task could be accomplished. Throughout the project, we implemented ideas that worked well 
towards completing this project successfully. We used an online tool (dropbox.com) to keep track of our 
documentation. This tool was very versatile in the sense that it worked as a shared folder. We also 
established more than one way of communicating with each other, which was vital in ensuring everyone 
on the team was kept up to date. We did a lot of research before starting the project, which in the long 
run saved us a lot of time. Meetings that were held were extremely productive, with meeting agendas 
used as a guideline for tasks that needed to be completed before team meetings. The team had some 
lessons to learn from this project, which will be greatly valuable to take into the working field, upon 
graduation. One of the things we did not account for was dropbox.com working against us, due to our 
inefficiency. Too many versions of a document were being uploaded into dropbox.com, making it almost 



42 
 

impossible to identify the final, edited version. The team had another dilemma, which almost disrupted 
the third quarter of our project. The members made a mistake of starting up multiple tasks all at once, 
and not being able to complete these tasks, since they were overwhelmed by the workload. The team 
managed to scramble and complete all the pending tasks, and asserted that only one goal should be 
addressed at a time. 
We were also naïve when it came to scheduling, as we did not account for problems that could arise 
throughout the project. The team rectified this by making more reasonable deadlines, after analyzing all 
the possible delays that could occur. 

 

1. Project critique 
  

Despite the setbacks we faced, the team was able to face these challenges and overcome it. Although 
the team does not have a finished product, we will look at this project as a success, and take with us 
some valuable technical and non – technical experience. 
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List of Abbreviations and their definitions  
 
Table 9 List of Abbreviations and their definitions 

Abbreviation Description  

ADC Analog to Digital convertor 

AGC Automatic Gain Control 

ASIC Application Specific Integrated Circuit 

BPF Band Pass Filter 

DAC Digital to Analog Convertor 

dB Decibel 

DE2 Development & Education 2 (by Altera) 

DSP Digital Signal Processor 

FIR Finite Impulse Response 

FPGA Field Programmable Gate Array 

Hz Hertz 

IIR Infinite Impulse Response 

kHz Kilo Hertz 

LPF Low Pass Filter 

MHz Mega Hertz 

NAU Northern Arizona University 

PAM Pulse Amplitude Modulation 

VHDL VHSIC Hardware Description Language 

VHSIC Very High Speed Integrated Circuit 
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