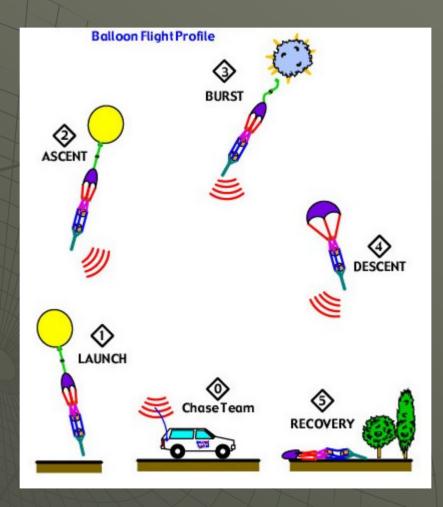

CAP-HAB (Capstone-High Altitude Balloon) EE 476

Jad Lutfi Andrew Prosory Rob Hough Rob Conant

Rob Hough

High Altitude Research Balloon Overview

Project Overview
Problem Statement
System Diagram
Design Proposal
Subsystem Breakdown
Schedule
Budget Breakdown


Problem Statement

 The NAU/NASA Space Grant Administration has requested the design, launch and retrieval of a small payload on a high-altitude weather balloon.

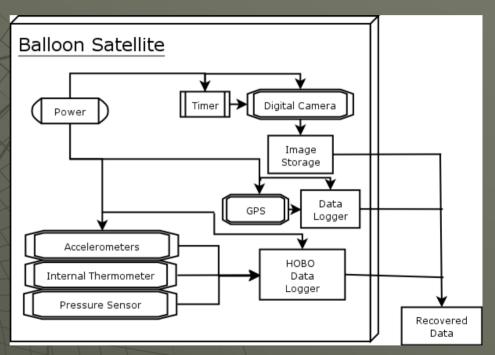
 The payload satellite will be designed to measure various atmospheric parameters

- Temperature of -80° to 90° Fahrenheit
- Pressures 0 to 1 Bar
- Altitudes of approximately 100,000 feet
- Capture Images

System Conceptual Diagram

Rob Hough

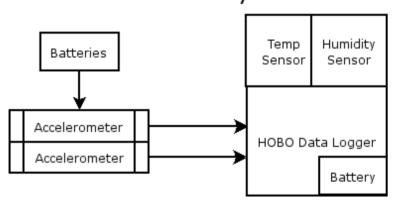
Document Changes


Additional Requirement

- Satellite must be able to withstand Two meter drop
- Design Plan Change
 - Cost Constraint

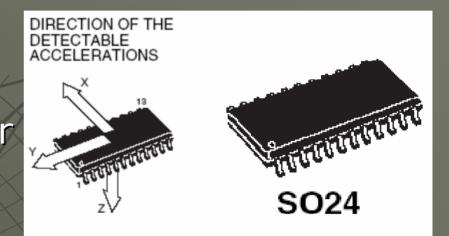
Rob Hough

System Breakdown


 Sensor Subsystem Digital Imagery Subsystem Location Tracking Subsystem ♦ Satellite Structure Subsystem Power Subsystem

Sensor Subsystem

Planned Sensors


- 3-Axis Accelerometer
- Temperature Sensor
- Humidity Sensor
- Data Logger
 - Onset HOBO data logger

Sensor Subsystem

ST Microelectronics LIS3L02AQ 3-Axis Accelerometer

Measures Flight G-Forces
3-Axis Accelerometer Surface Mount IC
3 Analog Outputs
Ranges Include +-2g or +-6g

Onset HOBO

 Data Logger and Sensors Combined Battery operated 4 channels 2 external For the Accelerometers 2 internal Sensors Relative Humidity Temperature Serial Interface Software Configured for data resolution and start delay Software Accessed to Recover

Data

Digital Imaging Subsystem Constraints used to judge camera selection Operation life, Weight, Quality, and Dimensions

Camera Chosen with Decision Matrix

Camera Type	Weight (lbs)	Dimension (inches)	Picture Quality	Price	Batteries	Operation Life
Olympus C-55	0.75	4.3 x 2.6 x 1.9	5 Mega Pixels	\$270 - \$300	AA (4) batteries	340 min
Sony Cyber-shot T5	0.3	3.7 x 2.4 x 0.8	5 Mega Pixels	\$250 - \$350	Proprietary Lithium	128 min
Canon SD400	0.29	3.4 x 2.1 x 0.8	5 Mega Pixels	\$250 - \$350	Proprietary Lithium	108 min
Casio EX-Z50	0.33	3.4 x 2.3 x 0.9	5 Mega Pixels	\$200 - \$250	Proprietary Lithium	240 min

Digital Imaging Subsystem

Camera Type	Weight	Dimension	Battery Life	Memory	Feature/Quality	Totals
Olympus C-55	3	3	10	6	7	29
Sony Cyber-shot T5	9.5	9	4	6	5	33.5
Canon SD400	10	10	3	8	8	39
Casio EX-Z50	9	9.5	8	8	8	42.5

 Our choice is the Casio EX-Z50

Camera Actuator

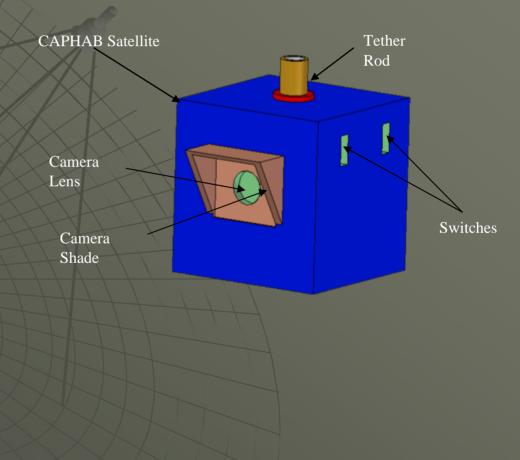
555 Circuit – V-MK111 Timer adjustable by changing Resistance and Capacitance Weighs .063 pounds ♦ .85" x 2.2" x 1.5" dimensions Worked successfully on first flight

Location Tracking Subsystem

Global Positioning System ♦ Garmin® GPS 35 TracPak Tracks above 60,000 ft Weighs .275 pounds Operation Temperature • -22F to 185F Dual Serial Port Interface

Jad Lutfi

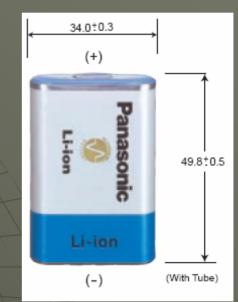
GPS Data Logger


Stores over 50,000 GPS log points
Serial Port Interface
Weighs .085 pounds
Dimensions: 2.4" x 1.5" x 0.5"

◆ XL-25

Satellite Structure Subsystem

- 1 x 1 x 1 foot cube
 1st Sat Constructed with
 - Mattboard
 - Polyethylene foam
- Ice Box test
 - Analyze differences between
 - Polyethylene foam
 - Polyurethane foam
- Camera Sun Shade



Power Subsystem

Selection criteria

- Weight
- Voltage output
- Power life
- Dimensions
- Space applicable

Nominal V	3.7v	
Standard C	1400mAh	
Dimensione	Width	1.2"
	Height	1.95"
Dimensions	Thickness	0.45"
	Weight	1.5 oz
Temperature	-20 to 40 C	

Jad Lutfi

Plans Until February

 Accomplished to Date Build/Launched Prototype Satellite Preliminary Subsystem Designs Reviewing/Finalizing the Design Solidifying Details Evaluation by NASA Advisors Ordering Parts

Skeleton Plan

Spring 2006: Phase I (first 1/3 of semester) Finalize design of payload with appropriate documentation. Conduct design reviews.

Spring 2006: Phase II (second 1/3 of semester) Implement the design and build the payload. Payload undergoes extensive pre-flight testing.

Spring 2006: Phase III (Final 1/3 of semester) Launch and recover payload at weekend workshop in central Arizona. Review images and data acquired.

Rob Conant

Budget Breakdown

- Project expenses covered by NAU NASA Space Grant including:
 - Travel, food, lodging and vehicles for two launch weekends
 - Tools and equipment, office space, office supplies
 - \$2000 for the payload itself

Estimated Budget

 Total Budget - \$900 (of \$2000) Imaging Subsystem - \$350 Sensor Subsystem - \$50 Location Subsystem - \$400 • Container - \$50 • Power - \$50 Remaining Budget - \$1100

Questions/Comments

Rob Conant