
CAP-HAB (Capstone-High Altitude Balloon) EE 476

Jad Lutfi Andrew Prosory Rob Hough Rob Conant

Rob Conant

High Altitude Research Balloon Overview

Project Overview

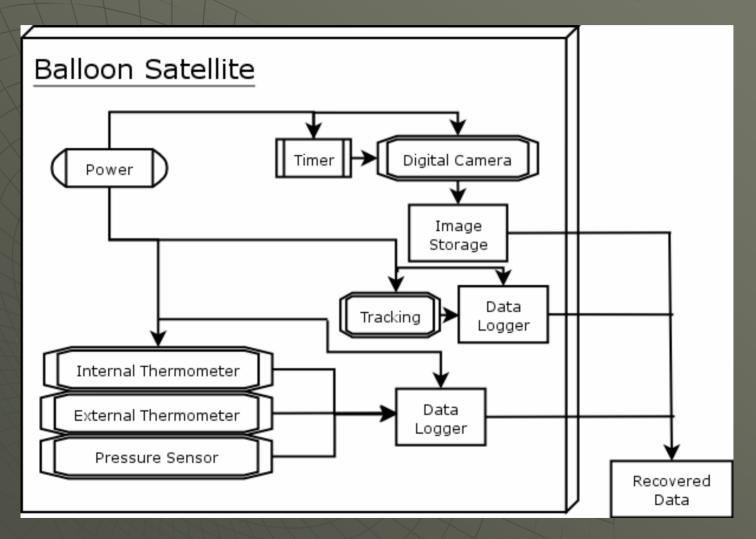
- Problem Statement
- Background
- Benefits
- System Diagram
- Requirements & Specifications

Design Plan

- Design Approach
- Deliverables
- Individual Schedule Highlight

Problem Statement

 The NAU/NASA Space Grant Administration has requested the design, launch and retrieval of a small payload on a high-altitude weather balloon.


 The payload satellite will be designed to measure various atmospheric parameters

- Temperature of -80° to 90° Fahrenheit
- Pressures 0 to 1 Bar
- Altitudes up to 100,000 feet
- Capture Images

Project Background & Benefits

The Project is sponsored by the Arizona/NASA space grant to involve undergraduate students in a full design-build-fly-operate-analyze cycle of a space mission Mission Data and Images will help analyze the earth's surface features, atmosphere, cloud structure and curvature at specific locations

System Conceptual Diagram

Requirements & Specifications Mechanical

 A container that contains all relevant components and satisfies all size and weight requirements

 The container should be able to facilitate a non-abrasive tether through the center mass of the container.

Requirement	Specification
Size of the container	1 cubic foot (1ftx1ftx1ft)
Weight of the container	2-3 pounds
The temperature range that the container should withstand	-80° to 90° F

Requirements & Specifications Electrical

Requirement	Specification	
Power	Minimum Battery life of 3 hours	
Devices operation specs	Temperature range between -80° and 90° F	
	Pressure range between 0 and 1 bar	
Digital imager	Obtain a resolution of 3-5 Mega-pixels	
	Capture an image each one minute	
	A storage capacity of at least 1 GB (>180 images)	
Temp. Sensor range	-80° to 90° F	
Pressure Sensor range	0 to 1 bar	
Tracking device altitude range	0 to 100,000 ft	
Accuracy	Data correlation error between devices of < 10 min	
Jad Lutfi		

Requirements & Specifications Client Documentation

Requirement	Specification
Biweekly reports	What happened since last report
	Major Milestones for the next two weeks
	Critical problems
Final documentation	Design & detail descriptions of each sub- system
	Well recorded to facilitate repairs

Jad Lutfi

Requirements & Specifications

$\square \square$	ct	in	
КС	st		
		777	

Requirement	Specification
Testing period	Completed during the second one-third of the spring semester
Payload operation test	Simulate operation under high and low temperature
Battery test	Battery operation for at least 3 hours
Durability test	Simulate payload under vibration and shock
Camera functionality test	Appropriate correlation between timing and image capturing (i.e. 1 image per 1 minute)
	Enough memory space to capture > 180 images
Data loggers	Test storage of sensors data outputs

Requirements & Specifications

General

Requirement	Specification
Project budget	Payload should cost < \$2000
Payload launch location	Maricopa City, AZ
Payload launch and recovery Date	Late April (28-29 April)

Jad Lutfi

Design Approach

Subsystem Breakdown

- Electrical
 - Digital Imaging
 - Data-Logging
 - Temperature Sensors
 - Pressure Sensor
 - Latitude/Longitude
 - Altitude
 - Power
 - Batteries
 - Power Supply Lines
- Mechanical
 - Physical Container Design/Construction
 - Tether
 - Insulation
 - Device Installation
 - Heating

Andrew Prosory

Design Approach

Team Organization

 Each subsystem will be assigned a Manager

• Responsibilities:

The overall progress of their subsystem

 Ensuring their subsystem's completion by deadline

Organize meetings and brainstorm sessions

Design Approach

Technical Challenges

 The team will be challenged by balancing the tradeoffs between functionality, weight, cost, and/or size

- Meet battery life requirements while staying under weight limit
- Correlating the data from the sensors and camera will be challenging as well
- Maintain Thermal Stable Environment

Deliverables First Satellite Biweekly Reports Major technical milestones Critical Problems Recent accomplishments Vision and Mission Statement Full Design Report Design Proposal Budget

Schedule Highlights

 November 18, Participate in workshop to fly and retrieve a small payload

Individual tasks for next phase Rob Hough Research battery and sensor options Rob Conant Research environmental options for container Jad Lutfi Research cameras Andrew Prosory Research location tracking devices

Skeleton Plan

Spring 2006: Phase I (first 1/3 of semester) Finalize design of payload with appropriate documentation. Conduct design reviews.

Spring 2006: Phase II (second 1/3 of semester) Implement the design and build the payload. Payload undergoes extensive pre-flight testing.

Spring 2006: Phase III (Final 1/3 of semester) Launch and recover payload at weekend workshop in central Arizona. Review images and data acquired.

Questions/Comments

EOSS61 launch.mpg