Table of Contents for Software Design

1. Introduction
1

1.1. Problem Overview
1

1.1.1. Background of Surveillance
1

1.1.2. Hyperspectral Images Overview
1

1.1.3. Using Hyperspectral Images for Surveillance
1

1.2. Solution Overview
2

2. Software Architecture Overview
3

2.1. Overall Architecture
3

2.2. Image Standardizing
4

2.3. Preliminary Processor
5

2.3.1. Overview and Flow of Operation
5

2.3.2. Hough Transform
6

2.3.2.1. Roberts Edge Detection
6

2.3.2.2. Hough Transform Algorithm
7

2.3.2.3. Hough Transform Implementation
8

2.3.3. Normalized Cross-Correlation
9

2.3.3.1. Normalized Cross-Correlation Algorithm
9

2.3.3.2. Normalized Cross-Correlation Implementation
11

2.3.4. Hyperspectral Analysis
11

2.3.5. Feature Extraction
12

2.3.5.1. Initial Features
13

2.4. Intermediate Text File
13

2.4.1. Intermediate Text File for Training
13

2.4.2. Intermediate Text File for Testing
14

2.5. Neural Network
14

2.5.1. Overview of Neural Networks
14

2.5.2. Initial Configuration of Neural Network
16

2.5.2.1. Activation Function
16

2.5.2.2. Internal Structure and Modification Plan
16

2.5.3. Training and Validation of Neural Network
17

2.6. Output Text File
18

3. System Development Plan
19

3.1. Development Plan Overview
19

3.2. Development Plan Schedule
20

1. Introduction

1.1. Problem Overview

1.1.1. Background of Surveillance

Surveillance is an important aspect of defense of any sort. The knowledge of surrounding terrain as well as the locations and movements of allies and enemies are vital to a successful campaign. Historically, human scouts risked their lives to physically gather information about surrounding terrain and locate and track enemy forces. With the advent of technology, surveillance is now done primarily by machines, specifically satellites. Satellites now take digital pictures of the nearly the entire Earth’s surface roughly once every 10 seconds. Sensors on satellites are capable of perceiving and recording reflected light wavelengths well beyond the spectrum visible to the human eye. Images containing information from multiple wavelengths are stored in hyperspectral images

1.1.2. Hyperspectral Images Overview

Hyperspectral images are made up of layers, where each layer corresponds to a different wavelength. For an example, think of a color digital image. Let’s say three exposures are taken of the exact same scene where each exposure is sensitive to only one wavelength in the light spectrum. One exposure may be sensitive to the wavelength seen as green to the human eye. The other two may be sensitive to the wavelengths seen as red and blue, respectively, to the human eye. If all three exposures are stacked on top of each other they are a hyperspectral image, where each exposure is a layer (sometimes called band) of the image. Effectively, hyperspectral images are just many individual images of the same scene all stacked up. Each layer is contains values of a specific wavelength, and no information on other wavelengths. As hyperspectral images can have tens or hundreds of layers, they are often referred to as cubes because they have the length and width of the image and stacked layers creating a height. If one plots the value of a specific pixel through all available layers, this plot is called the hyperspectral signature of that pixel. The layers in a hyperspectral image can represent wavelengths that are not visible to human eye including infrared and ultraviolet. The hyperspectral signature through a large number of layers can be used to determine the material existing at the location of a given pixel.

1.1.3. Using Hyperspectral Images for Surveillance

Hyperspectral images are useful in surveillance because they contain a large amount of data not visible to the un-aided human eye. Different materials will have different hyperspectral signatures, thus making it easier to distinguish man-made materials from natural terrain. Camouflage techniques such as painting or covering a vehicle to blend into the surrounding terrain will not change the hyperspectral signature of that vehicle. Hyperspectral signatures are also relatively unaffected by weather conditions or time of day, both of which will make identification difficult with simple color images.

The problem with using hyperspectral images for surveillance is the large amount of data. Although the additional data is useful in identification of objects within images, it also takes more time to analyze. A monitor can only display three colors (red, green, and blue), and so can only display three layers at one time. A human analyst can only meaningfully view a few layers at a once, and therefore could take several hours to look through a single image. Having a human analyst process several hundred images would be an impractical use of man-power and money. In real-time tactical situations enemy units could move faster than hyperspectral images could be analyzed. Information on where units are now is much more relevant than where units where an hour ago. A system must be developed to speed up the process of locating enemy units.

Our sponsor, the United Stated Air Force, is interested in a system that can quickly and accurately locate potentially hostile vehicles within hyperspectral images. The benefits of this system would include devaluing current camouflage techniques through the use of hyperspectral analysis without a significant increase in man-power.

1.2. Solution Overview

The Automatic Target Recognition (ATR) project will search hyperspectral images using three image-processing algorithms to locate and highlight potentially hostile vehicles as targets. A preliminary processing stage will process the hyperspectral images using the Hough Transform, normalized cross-correlation, and hyperspectral analysis. Features extracted from areas highlighted in the preliminary processor as potential targets will be fed into a neural network for classification. The neural network will output a confidence rating for each potential target’s probability of being a hostile vehicle, as well as the pixel location of each potential target. The ATR system will process images quickly and accurately. A human analyst will be required only to initialize the process, and to make a final judgment on the neural network classification. The ATR system will not eliminate the use of a human operator; just limit the amount of time a human analyst needs to spend locating hostile vehicles. A human analyst will be required only to initialize the process, and to make a final judgment on the neural network classification. The details of the algorithms used and the architecture of the ATR system are discussed in the remainder of this document.
2. Software Architecture Overview

2.1. Overall Architecture

The Automatic Target Recognition (ATR) system will have two distinct modules, a preliminary processor and a neural network. Standardized images will be input into the preliminary processor. The preliminary processor will output an intermediate text file containing a feature vector. The neural network will read in the intermediate text file, and will output location and a confidence rating of potential targets.

[image: image1.png][image: image11.wmf]å

=

=

n

i

i

i

x

w

I

0

[image: image12.wmf]å

=

=

n

i

i

i

l

k

R

0

[image: image13.wmf]2

/

1

2

2

}

]

)

1

,

(

)

,

1

(

[

]

)

1

,

1

(

)

,

(

{[

)

,

(

+

-

+

+

+

+

-

=

y

x

f

y

x

f

y

x

f

y

x

f

y

x

g

[image: image14.wmf]å

=

=

n

i

i

i

x

w

I

0

[image: image15.wmf]2

/

1

2

2

}

]

)

1

,

(

)

,

1

(

[

]

)

1

,

1

(

)

,

(

{[

)

,

(

+

-

+

+

+

+

-

=

y

x

f

y

x

f

y

x

f

y

x

f

y

x

g

Figure 2.1.1 Overall Architecture of the ATR system

Hyperspectral images will be standardized prior to being input into the ATR system. The standardizing will consist of reformatting all images to have a standard pixel depth and contain the minimum hyperspectral bands required for processing. Further details on the standardizing process and format can be found in Section 2.2. Image Standardizing of this document.

In the initial analysis phase, the preliminary processor will search the standardized images for potential target using three separate algorithms. The algorithms used will include the Hough transform to locate vehicle tracks, followed by hyperspectral analysis and normalized cross-correlation for locating vehicles around these tracks. The preliminary processor will output a text file containing locations of potential targets and a feature vector to be used as input to the neural network. The details of the preliminary processor and the algorithms used are discussed in Section 2.3. Preliminary Processor of this document.

An intermediate text file will be used to pass the feature vector from the preliminary processor to the neural network. One text file will be created for each image processed, and may contain zero or more potential targets. For each potential target, the text file will contain a pixel location and a vector of features extracted from the image at that location. The format of the intermediate text file is outlined in Section 2.4. Intermediate Text File of this document. The feature vector will be a list of normalized numbers, where each number represents a measurable feature extracted from the input image. Examples of features are: object length and width (measured in pixels), object color (numeric representation of a color), or texture coefficient. Feature extraction and a list of the initial features are discussed in Section 2.3.5. Feature Extraction of this document.

In the second analysis phase, the intermediate text file will be read in and input to a neural network. Neural networks are information processing systems inspired by the structure of the human brain. Neural networks can be “trained” to distinguish patterns in input data. Once a neural network is trained, it can then classify new input data based on the patterns found in training. The neural network in the ATR system will classify the input feature vector as being a target, or not a target. The output of the neural net will be the pixel location of the input feature vector and a confidence rating of that location being a target. Further details on neural networks and the configuration of the neural network for the ATR project are discussed in Section 2.5. Neural Network of this document.

The final output of the ATR system will be the pixel locations of potential targets and the confidence rating of each location. Locations and confidence ratings will be output to the screen for immediate analysis, and to a text file for later analysis. The details and format of the output text file are discussed in Section 2.6. Output Text File of this document.

2.2. Image Standardizing

Our sponsor, the United States Air Force, has given us 400 hyperspectral images from four different locations for developing and testing the ATR system. The images cover a variety of terrain and are from San Diego, California (marshland terrain); Yuma, Arizona (desert terrain); Virginia (swamp and forest terrain); and Texas (plains terrain). The hyperspectral images provided by the U.S. Air Force each contain 224 layers covering the spectral wavelengths from 370.43nm to 2520nm. The wavelengths covered in the hyperspectral images cover the visible light spectrum (400nm – 750nm) and into the infrared range (750nm – 1,000,000nm). The hyperspectral images are in a .bil format with each image having a .bil file and .bil.hdr file. The .bil files have an average size of 106MB each.

Within the 224 layers contained in the original images, 70 layer are considered “bad”. A layer is “bad” if it contains little variation in pixel value throughout the entire layer, throughout all images. The “bad” layers are 1-5 (370.43nm – 419.58nm), 31-33 (665.18nm – 675.00nm), 77 (1078.06nm – 1087.47nm), 96 (1256.75nm – 1255.57), 102-117 (1305.43nm – 1464.88nm), 149-178 (1773.40nm – 2061.77nm), and 211-224 (2381.12nm – 2520nm).

The hyperspectral images provided must be reformatted and resized in order to be usable for MATLAB. The hyperspectral images will be standardized to ensure all have the same pixel depth of one meter, and to ensure all are in a size and format MATLAB can accommodate. The original hyperspectral images will initially be trimmed down to contain layers 5 – 25 (409.75nm – 616.08nm), which contains most of the visible light spectrum and no “bad” layers. Layers covering the infrared spectrum are of less use to the ATR algorithms than those in the visible spectrum. The standardized images will be saved into a TIFF (.tif) format, which is readable to MATLAB, and can accommodate multiple layers.
2.3. Preliminary Processor

2.3.1. Overview and Flow of Operation

The preliminary processor will be written in MATLAB because MATLAB has functionality for image processing built in. Many of the algorithms, including the translation into Hough space (for the Hough Transform), and estimation of correlation sequences (for Normalized Cross Correlation), already exist in the MATLAB environment. The ability to use pre-built functions, opposed to writing, debugging, and validating our own functions, will save a great deal of programming time.

The preliminary processor will use three algorithms to locate potential targets within the standardized images. First, the Hough Transform will be used to locate straight-line tracks in the whole image (see Section 2.3.2 Hough Transform). Second, normalized cross-correlation will be run through the entire image to locate areas that “look” similar to hostile vehicles (see Section 2.3.3 Normalized Cross-Correlation). Third, the hyperspectral analysis will be run on any area with a high response to the cross-correlation that falls within 10 pixels of tracks found by the Hough Transform (see Section 2.3.4 Hyperspectral Analysis). If all three algorithms produce a positive result, features will be extracted from that location (see Section 2.3.5 Feature Extraction). These features will be normalized and output to the intermediate text file.

[image: image16.wmf]å

=

=

n

i

i

i

l

k

R

0

Figure 2.3.1.1 Overview of Preliminary Processor
The details of each of the algorithms and the feature extraction are discussed in the remainder of this section.

2.3.2. Hough Transform

2.3.2.1. Roberts Edge Detection

Before a Hough transform can be used, we must first determine edges. Edges occur where there is a drastic change in value from one group of adjacent pixels when compared to a group of adjacent pixels. The ATR system uses the Roberts Edge Operator to find edges. The Roberts edge detection finds area with high spatial frequency (change in value from one pixel to the next). This method is desired over other edge detection methods because hyperspectral images contain very accurate frequency information that provides a better match to the Roberts algorithm. Roberts also finds all edges, not just edges surrounding an object. This distinction is important as tracks will be found as edges by Roberts algorithm, but may not be designated as edges by algorithms that find edges of objects.

The Roberts edge detection algorithm works by finding the difference in a pixel’s value from the pixels to the right, below, and diagonally right and below.

[image: image2.png]
Figure 2.3.2.1.1 Pixels used in Roberts edge detection.

 The equation for this is:

Where: f(x,y) is the value of the pixel in the input image at coordinates (x,y).

2.3.2.2. Hough Transform Algorithm

The Hough Transform is useful for locating straight lines within images. In the case of the ATR system, the Hough Transform is used to find tracks left behind by vehicles. Since vehicles are often driven in straight lines, the Hough Transform is a good match for locating vehicle tracks. The Hough Transform algorithm is discussed below. The specifics on how the Hough Transform is used in the ATR system are discussed in Section 2.3.2.3 Hough Transform Implementation.

The Hough Transform works by translating edge pixels into Hough space, and then looking for places where multiple pixels fall on the same line. The translation to Hough space is based on the following: any line of the form y = mx + b can be translated into polar coordinates where (= xcos(() + ysin((). The vector (p, () extends from the origin to the point in the line where the vector is exactly perpendicular to the line. The point (p, () is the translation of the line in Hough space.

[image: image3.png]
Figure2.3.2.2.1 Translation of a line into Hough space

Any point in the xy-plane could have many straight lines passing through it. The translation of a point into Hough space is the compilation of all lines that pass through that point into Hough space. The translation of a point into Hough space is a sinusoidal curve.

[image: image4.png]
Figure 2.3.2.2.2 Translation of a point into Hough space

 An intersection of two or more curves in Hough space represents a line that contains all points whose curves are a part of that intersection. Thus, if edge pixels are translated into Hough space, an intersection involving several curves represents a straight line in x-y space.

The Hough Transform is implemented discreetly in image processing. A two dimensional array is used where one dimension represents p, and the other dimension represents (. Each cell or “bin” represents a consecutive span of p and (in Hough space. Initially, all bins are set to zero. The edge pixels are taken one at a time, and translated into Hough space. For each (p, () value on the sinusoidal curve, the bin containing that value is incremented. After all points have been translated, bins containing local maximal values represent straight lines in the image. The larger the local maximum value, the stronger and longer the line segment is in the image.

2.3.2.3. Hough Transform Implementation

Prior to running the Hough transform, the ATR system will create a single layer grayscale image using all available layers from the standardized image. Roberts edge detection will then be used on the grayscale image to locate edge pixels (see Section 2.3.2.1 Roberts Edge Detection for a description). The Hough transform will be run using the edge pixels extracted by the Robert edge detection. The Hough transform used by ATR system will use 180 (p, () bins. Bins that are local maximums and contain a value of at least 50 will be considered tracks.
2.3.3. Normalized Cross-Correlation

2.3.3.1. Normalized Cross-Correlation Algorithm

Normalized cross-correlation is used to find similarities between two signals. In image processing, cross-correlation is used to determine the similarities between two images. For the ATR system, normalized cross-correlation will be used to locate objects that look similar to hostile vehicles. The normalized cross-correlation algorithm is discussed in this section. The specific implementation used by the ATR system is discussed in Section 2.3.3.2 Normalized Cross-Correlation Implementation.

Cross-correlation determines the amount of similarity between two images. The images can be of any size, and there is no relationship between their sizes. Generally, a smaller image is used as the kernel to locate specific areas of interest within a larger image. The kernel may contain both positive and negative values, and is often a collection of images of an object at various angles all combined into one “image”. The kernel may not be displayable or recognizable as an image, but must contain information that is overall similar to the object or pattern desired.

[image: image5.png]
Figure 2.3.3.1.1 Example Kernel and Image (2-bit image)

The kernel is “slid” over the larger image and produces a response based on the similarity of the portion of the larger image overlapped by the kernel. The process is similar to sliding a cookie-cutter of a shape over a picture and looking for places that match the cookie-cutter.

[image: image6.png]
Figure 2.3.3.1.2 Sliding a kernel across an image

The actual correlation response is calculated by multiplying the value of each kernel pixel by the value of the pixel in the larger image that is currently overlapped, and then summing all the products. The equation for this is:

k is the value of the kernel pixel,

 l is the value of the larger image pixel, and

n is the total number of pixels in the kernel.

The larger the response, the more similar the overlapped section is to the kernel. A small or negative response means there is little or no similarity between the kernel and the overlapped section. For the simple example above, the strongest responses will be where the kernel matches the overlapped portion of the image exactly.

[image: image7.png]
Figure 2.3.3.1.3 Instances that will have a strong response

Weak responses will occur where the kernel is exactly opposite of the overlapped portion of the image.

The responses to the cross-correlation are stored in a two-dimensional array, the size of which is kd+ld-1 where k is the size of the kernel, l is the size of the image and d specifies either width or height. Cells containing local maximums correspond to locations in the image that are similar to the kernel. To normalize the cross-correlation, you must calculate the highest and lowest possible values; the kernel correlated with itself and the kernel correlated with it’s exact opposite, respectively. The highest possible value is assigned to 1, while the lowest is assigned to –1. All other possible values are normalized to fall in between.

2.3.3.2. Normalized Cross-Correlation Implementation

The normalized cross-correlation used by the ATR system will use the same grayscale image created for the Hough transform. The grayscale image will be a single layer grayscale image using all available layers from the standardized image. A local maximum value of .4 or higher will be considered a target. The kernel used by the normalized cross-correlation can be seen below:

[image: image8.png]
Figure 2.3.3.2.1 Initial Kernel for Normalized Cross-Correlation

This is the preliminary kernel, and may be modified for better accuracy. A new kernel may be created using a mishmash of hostile vehicles taken from the actual grayscale images.
2.3.4. Hyperspectral Analysis

Hyperspectral analysis will use the values of pixels within a specific layer of the image to determine what materials are present. Because different materials have different hyperspectral signatures (see Section 1.1.2 Hyperspectral Images Overview for a definition of hyperspectral signature), the value of a pixel on specific layer, or span of layers, can be used to determine the material present at that pixel’s location.

The ATR system will look for the signatures of metal found on hostile vehicles, specifically depleted uranium and steel. Depleted uranium creates a non-zero response in the area of 515nm, and steel creates a non-zero response in the area of 525nm. Few other materials create responses on these wavelengths, so any non-zero response within layers containing 515nm – 525nm is almost guaranteed to be steel or uranium.

The hyperspectral analysis will use layers 14 – 18 (498.19nm – 557.10nm), and only be run at pixel locations that are nearby tracks and meet the threshold requirement of the normalized cross-correlation. Initially, if any non-zero value is found on any of layers 14 – 18 at this pixel location, that location will be considered a potential target. Depending on the accuracy of this strategy, another qualification strategy may be used instead. Taking an average of the pixel’s value though layers 14 – 18 may provide less false positives, and is being considered as an alternative.

2.3.5. Feature Extraction

After locating areas that may contain targets, the preliminary processor will extract certain feature from these areas. These features will be normalized (normalization is discussed in Section 2.4.1. Intermediate Text File for Training) and then organized into a feature vector and input into the neural network for classification. Features can be anything measurable or extractable from the image. Examples of features could be width and height (measured in pixels), color (represented by a number), or coefficients relating to texture (found by Fourier Transformation). Because images in the ATR system are hyperspectral, the value of a pixel in a specific layer may also be a useful feature.

Features chosen for extraction should be independent of one another, and should have significantly different values for different classes. Features that correlate closely will not provide any different information, and may actually hinder the classification process. Features that are not significantly different for different classes will not provide information useful in classification. For example, color will not be a reliable feature for the ATR project as a hostile vehicle can be painted any color and will often be colored to resemble the surrounding environment.

The number of features extracted should be kept small to simplify the classification process. A large number of features will require a larger and more complex neural network, take more time and data to train the neural network, and will not necessarily provide a better classification. The initial number of features extracted for the ATR project will be three. Depending on the accuracy of the results from these three features other features may be added or swapped in to achieve the highest accuracy with the simplest architecture.
2.3.5.1. Initial Features

The initial features to be used for the ATR system are texture, shape and size. Hostile vehicles will have a texture that is similar for all hostile vehicles, and different than that of surrounding terrain. The shape of a vehicle will be more square regular shapes than the shape of terrain such as bushes or natural terrain. Hostile vehicles will be of similar sizes to each other, but have sizes very different from metal buildings or scraps metal. None of the features of size, shape, and texture, are directly related to another.

The features will each be extracted from the standardized image, normalized, and output to the intermediate text file. Texture will be extracted from the standardized image using the Discreet Fourier Transform (DFT). The Fourier transform determines repeating patterns in an image by translating an image to the frequency domain. Extraction techniques for shape and size will use edge detection and pixel counting, but no precise algorithm has been determined.
2.4. Intermediate Text File

The intermediate text file will convey the feature vector from the preliminary processor to the neural network. A text file was chosen for this communication to facilitate simultaneous work on both the preliminary processor and neural network, and to allow easy communication between different programming environments. An intermediate text file can be created by hand for initial training and testing of the neural network. A hand created intermediate text file can contain entirely fabricated data for early training and testing, and data gathered from the actual images in later iterations of testing. When both preliminary processor and neural network are functioning separately, a text file created by the preliminary processor can replace the hand generated text file. The use of the intermediate text file also simplifies communication between the MATLAB based preliminary processor and the Java based neural network.

Two different text files will be required by the neural network; one text file for training, and one for testing. The training text file will contain the desired confidence rating (output value), as well as the pixel location and feature vector. The testing text file will contain only the pixel location and feature vector and the neural network will determine the confidence rating.
2.4.1. Intermediate Text File For Training

The intermediate text file for training will use the following format. Each potential target within an image will result in one output a single line of the format:

DESCRIPTOR;feature1;feature2;...;outputValue

Where:
DESCRIPTOR: is a string, containing coordinates and any other information desired for identification of the specific potential target represented. For example: 124x147

featureY: (where Y is 1 – total number of features) is a normalized numerical value (between -1 and +1) that relates to a specific feature. For example, say we want to use the blueness of a pixel as a feature. A pixel can have a blue value of 0 – 255. A blue value of 0 would normalize to –1, while a blue value of 255 would normalize to +1. A blue value of 56 would normalize to -.441. Features must always be in the same order (i.e. in blueness is first, it must always be first).

outputValue: is one of either 1 (a target) or -1 (not a target)

2.4.2. Intermediate Text File for Testing

The intermediate text file for testing will use the following format. Each potential target within an image will result in one output a single line of the format:

DESCRIPTOR;feature1;feature2;...;featureX

Where:
DESCRIPTOR: is a string, containing coordinates without spaces (same as for training). This will be printed back out with the final answer, like follows:
124x147: Confidence level 83%

featureY: (where Y is 1 – total number of features) is a normalized numerical value that relates to a specific feature (same as for training).

Note: There is no output value specified in this file!

2.5. Neural Network

2.5.1. Overview of Neural Networks

Neural networks are data processing systems that imitate the functioning of the human brain. Neural networks are made up of interconnected neurons. Neurons are individual processing units that behave similarly to neurons in the human brain. Neurons are usually connected in layers. Fully interconnected neural networks require every neuron in a given layer to connect to every neuron in the next layer. If neurons are not allowed to connect to previous layers, or the layer containing the given neuron, the network is called feedforward. The initial layer in a neural network just passes the input values to the next later. The final layer outputs the final value. All layers between the initial and final layers are called hidden layers.

[image: image9.png]
Figure2.5.1.1 Fully Interconnected Feedforward Neural Network Structure

Neurons can have one or more inputs, and have only one output. A neuron functions by assigning weights to each of its inputs, multiplying each weight by the corresponding input value, and then adding together all the products. The equation for this is:

 w is the weight,

 x is the value of the input, and

n is the total number of inputs.

Weights can have positive or negative values. The output of the neuron is then determined by an activation function ((I). This activation function is usually non-linear, functions such as tanh(I) or 1/(1+e-5 * I) are commonly used.

By adjusting the weights individual neurons assigns to their inputs, the neural network can be trained to produce a desired output. Backpropagation is a common method for training neural networks. The neural network is initialized using small, randomized values for each weight. A vector from the training set is input into the neural network, and the output from the neural network is compared to the desired output. The error between desired output and actual output is calculated, and then this error is fed back into the neural network. Based on the error, the weights for the output layer are adjusted, then the weights of the middle layer, and finally the weights of the input layer. The next training vector is input into the neural net, and the cycle repeats for each vector from the training set. The entire training set is repeated until the output error reaches an acceptable low.

2.5.2. Initial Configuration of Neural Network

The neural network chosen for use in the ATR system is a fully interconnected feedforward network with backpropagation. This configuration is the “standard” neural network, and is the easiest neural network to implement. As implementation time is limited for the ATR project, we want the simplest solution that will give us the best chance at achieving an accurate classification. The neural network used in the ATR project is a modified version of Aydin Gurel’s feedforward neural network found at http://aydingurel.brinkster.net/neural/. Gurel’s neural network is written in Java, allows us to change the internal structure easily, and makes training and validation simple. The accuracy of classification by the neural network will depend greatly on internal structure and being able to modify and test various internal structures easily will save development time.
2.5.2.1. Activation Function

The initial configuration of the neural network will use the tanh(I) activation function. The tanh(I) activation function was chosen because it produces a wider range of values, -1 to 1, than the sinh(I) which only produces 0 to 1. The wider range of output values will allow the neural network to better handle slight variations in features since the normalization will cover a larger area (See Section 2.4.1 Intermediate Text File for Training for a discussion on normalization).
2.5.2.2. Internal Structure and Modification Plan

The initial internal configuration will consist of three input neurons, one hidden layer of six neurons, and an output layer of one neuron.

[image: image10.png]
Figure2.5.2.2.1 Initial Structure for ATR Neural Network

The three initial neurons correspond to the three features extracted by the preliminary processor (see Section 2.3.5 Feature Extraction). The output layer contains one neuron to produce the one desired output value, the confidence rating. The six neurons in the hidden layer are determined by the 2n rule of thumb. The maximum number of neurons required for adequate classification in a feedforward neural network with back-propagation is 2n, where n is the number of input neurons. The minimum number of neurons in the hidden layer is log(2)n where n is the number of input neurons. From six neurons (2 * 3 input neurons), we will reduce the number of neurons in the hidden layer to attain the simplest neural network without compromising accuracy.

2.5.3. Training and Validation of Neural Network

The data for initial training will be hand generated because the preliminary processor will not yet be capable of generating training data. The initial training set will consist of 500 feature vectors. The decision of a 500 part training set was made to try to lessen the time for training while still providing a good representation of the entire data set. Larger training sets may lead to slightly better training, but will take a significant amount more time to train on. Smaller training sets will cause the neural network to become specialized to the training set and not classify the general case accurately. Feature vectors for training will be taken from a selection of images from all four locations. The training set will contain feature vectors of targets and non-targets from all locations (locations are discussed in Section 2.2. Image Standardization). Of the 500 feature vectors in the training set, 80% (400 feature vectors) will be randomly selected for training. The remaining feature vectors will be used for cross-validation (10%) and testing (10%).

The neural network will initially be trained to a .100 (10%) error threshold on the training set. This threshold defines the percentage of improper classifications acceptable for training. Defining thresholds that are too tight may cause the neural network train to specialize to training set. Feature vectors not included in the training set may be similar, but not exactly the same as, the training set. Over-training the neural network may result in improper classification of data outside the training set because outside data may exhibit patterns slightly different from those in the training set. Should the 10% error threshold prove too tight, the neural network will be retrained to a .200 (20%) error threshold.

In the event that a training set containing data from the hyperspectral images cannot be obtained, an alternate training set will be created. The alternate training set will use color jpeg images of toy tanks and cars from a top perspective on various backgrounds. A team member will obtain the jpeg images using a digital camera. A feature vector will be extracted from the jpegs by hand using only one or two features. The neural network will be trained to distinguish the toy tanks from the various backgrounds as well as from the toy cars. If a training set from the hyperspectral image is made available, work will begin immediately to train the neural network using the original plan.

2.6. Output Text File

The output text file will contain the pixel location of each potential target and the confidence rating that the potential target represents an actual target. The confidence rating will be determined by the neural network (see Section 2.5 Neural Network). Information output to the text file will also be output to the screen in a similar format. For each potential target input from the intermediate text file, a line of the form will be written:

DESCRIPTOR;rating

Where:

DESCRIPTOR: is a string, containing pixel coordinates and other identification information. (This is the same DESCRIPTOR used in the Intermediate Text File. See Section 2.4 Intermediate Text File for further details). For example: 124x147

rating: is the confidence rating of that location. The confidence rating will be normalized to fall between 0 and 100. 0 meaning no resemblance to a target, 100 meaning positively a target.

3. System Development Plan

3.1. Development Plan Overview

The focus for the Automatic Target Recognition (ATR) system is heavily on algorithm development and accuracy with speed as a secondary concern. Usability and programming language are not primary concerns. The ATR system must be developed within 16 weeks (one semester). To speed up the development process, the preliminary processor and neural network will be developed simultaneously. The decision to develop concurrently will both save time in development and provide division in development tasks for the team. Development of each component will not be dependant on functionality of the other component, and delays in the completion of on component will not affect the completion of the other.

The preliminary processor and neural network will be integrated before completion of the ATR system. Communication between the preliminary processor and neural network will be accomplished with an intermediate text file. Integration of the preliminary processor and neural network will consist of the preliminarily processor initializing the pre-trained neural network. The preliminary processor will pass the name of the text file to be input to the neural network during initialization, and will output the pixel location and confidence rating to the command line.

The ATR project has four major phases:

· Phase I – Overall System Design and Skill Acquisition

Phase I of the ATR project for the Computer Scientists will include learning and adapting a previously created neural network to meet the needs of the project. Tasks include understanding of the network and the ability to modify and manipulate the internal structure. The Electrical Engineers will be working on refining and validating the Hough Transformation as part of the preliminary processor, as well as implementing the normalized cross-correlation.

· Phase II – Specific System Design and Preliminary Prototype

Phase II of the ATR project will include the creation of detailed specifications about the architecture of the system. Selection of a preliminary set of features that can be extracted from the hyperspectral images by the preliminary processor and fed in to the neural network will also take place during this phase. The Computer Scientists will create and train a neural network using a training set of features extracted from the hyperspectral images. The Electrical Engineers will extract the set of features for training.

· Phase III – Testing and Modification

Phase III is the longest phase of the ATR project. This phase will include testing and validation of all portions of the system. The Computer Scientists will test the success of the features chosen, as well as the internal structure of the neural network. Modifications to the feature set and also modifications the internal structure of the neural network will take place during this phase. The Electrical Engineers will be refining the preliminary processor with the use of hyperspectral analysis. All portions of the ATR system will be tested and validated before integration.

· Phase IV - Integration

Phase IV includes the integration of the preliminary processor and the neural network. This phase is the final phase of the ATR project. Both Computer Scientists and Electrical Engineers will work together to integrate the two modules.

3.2. Development Plan Schedule

Currently, Phase I has been completed and Phase II is in progress. The Hough transform and normalized cross-correlation have been implemented in the preliminary processor using test images. A neural network has been acquired and trained on several sets of test data. This document covers the detailed specifications of the ATR system design. At this time, all three preliminary features have been selected. The following schedule outlines milestones from this point until the termination of this project.

March 28 – Preliminary features selected for neural network.

April 1 – Phase II complete: Initial training set created using preliminary features. Training of neural network begins using training set.

April 14 – Phase III complete: Testing and validation of preliminary processor and neural network as separate entities completed.

April 20 – Phase IV complete: Integration of preliminary processor and neural network completed

Intermediate Text File (Feature Vectors)

Preliminary Processor

Standardized Image

Neural Network

Output Text File

(Locations and Confidence Ratings)

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

Heimdalls Eyes

3/29/2005

_1172653027.unknown

_1173249331.unknown

_1172235225.unknown

