Table of Contents for Final Report

1. Introduction
1
1.1. Background on Military Surveillance
1
1.2. Hyperspectral Images
1
1.3. Using Hyperspectral Images for Surveillance
1
2. Project Requirements
2
2.1. High Level Goals
2
2.2. Functional Requirements
2
2.3. Performance Requirements
2
3. Process Overview
3
3.1. Team Organization
3
3.2. Project Management
3
3.3. Design Methodology
4
3.4. Deliverables Produced
4
3.4.1. Computer Science Deliverables
4
3.4.2. Electrical Engineering Deliverables
5
3.5. Project Timeline
5
4. Solution Overview
5
4.1. Solution as Proposed
5
4.2. Functional Specifications
6
4.3. Architecture Overview
6
4.4. As-Built Design Overview
7
4.4.1. Preliminary Processor
7
4.4.1.1. Hough Transform
8

4.4.1.2. Normalized Cross-Correlation
8

4.4.1.3. Hyperspectral Analysis
9

4.4.2. Neural Network
9
5. Testing and Future Work
10
5.1. Testing and Results
10
5.1.1. Preliminary Processor Testing and Results
10
5.1.1.1. Hough Transform Results
10
5.1.1.2. Normalized Cross Correlation Results
10
5.1.1.3. Hyperspectral Analysis Results
10
5.1.2. Neural Network Testing and Results
11
5.1.2.1. Size of Testing Set
11
5.1.2.2. Selection Process for Features
11
5.1.2.3. Final Testing Size and Error
11
5.2. Issues Uncovered
12
5.2.1. Issues Uncovered in the Preliminary Processor
12
5.2.2. Issues Uncovered in the Neural Network
12
5.3. Future Work
13
6. Conclusion
13
1. Introduction
1.1. Background on Military Surveillance
Surveillance is an important aspect of defense of any sort. The knowledge of surrounding terrain as well as the locations and movements of allies and enemies are vital to a successful campaign. Historically, human scouts risked their lives to physically gather information about surrounding terrain and locate and track enemy forces. With the advent of technology, surveillance is now done primarily by machines, specifically satellites. Satellites now take digital pictures of the nearly the entire Earth’s surface roughly once every 10 seconds. Sensors on satellites are capable of perceiving and recording reflected light wavelengths well beyond the spectrum visible to the human eye. Images containing information from multiple wavelengths are stored in hyperspectral images
1.2. Hyperspectral Images
Hyperspectral images are made up of layers, where each layer corresponds to a different wavelength. Effectively, hyperspectral images are just many individual images of the same scene all stacked up. Each layer is contains values of a specific wavelength, and no information on other wavelengths. As hyperspectral images can have tens or hundreds of layers, they are often referred to as cubes because they have the length and width of the image and stacked layers creating a height. If one plots the value of a specific pixel through all available layers, this plot is called the hyperspectral signature of that pixel. The layers in a hyperspectral image can represent wavelengths that are not visible to human eye including infrared and ultraviolet. The hyperspectral signature through a large number of layers can be used to determine the material existing at the location of a given pixel.

1.3. Using Hyperspectral Images for Surveillance
Hyperspectral images are useful in surveillance because they contain a large amount of data not visible to the un-aided human eye. Different materials will have different hyperspectral signatures, thus making it easier to distinguish man-made materials from natural terrain. Camouflage techniques such as painting or covering a vehicle to blend into the surrounding terrain will not change the hyperspectral signature of that vehicle. Hyperspectral signatures are also relatively unaffected by weather conditions or time of day, both of which will make identification difficult with simple color images.
The problem with using hyperspectral images for surveillance is the large amount of data. Although the additional data is useful in identification of objects within images, it also takes more time to analyze. A monitor can only display three colors (red, green, and blue), and so can only display three layers at one time. A human analyst can only meaningfully view a few layers at a once, and therefore could take several hours to look through a single image. Having a human analyst process several hundred images would be an impractical use of man-power and money. In real-time tactical situations enemy units could move faster than hyperspectral images could be analyzed. Information on where units are now is much more relevant than where units where an hour ago. A system must be developed to speed up the process of locating enemy units.
Our sponsor, the United Stated Air Force, is interested in a system that can quickly and accurately locate potentially hostile vehicles within hyperspectral images. The benefits of this system would include devaluing current camouflage techniques through the use of hyperspectral analysis without a significant increase in man-power.

2. Project Requirements
Overall requirements for the Automatic Target Recognition (ATR) system were determined by the Electrical Engineers in the Fall of 2004. Requirements were refined during team meetings between the Computer Scientists and Electrical Engineers early in the Spring of 2005. A brief summary of the ATR system requirements follows, for more detail see the Requirements Document.
2.1. High Level Goals
The overall goal of the Automatic Target Recognition (ATR) project is to decrease the time a human needs to spend looking through hyperspectral images. Automating the process of locating interesting areas within the images will drastically reduce the amount of data a human needs to spend physically look through, thus reducing time spent. The specific goals of the ATR system are as follows:
· Process Hyperspectral Images Quickly

· Automatically Identify Interesting Areas

· Accurately Classify Hostile Vehicles

2.2. Functional Requirements
The Automatic Target Recognition (ATR) system must meet the following functional requirements:
1. Process Hyperspectral Images

2. Output potential target locations with confidence rating

2.3. Performance Requirements

The Automatic Target Recognition (ATR) system must meet the following performance requirements:
1. Reliably classify hostile vehicles
2. Process hyperspectral images quickly
3. Process Overview
3.1. Team Organization
The team assigned to the ATR project consisted of two Electrical Engineers and two Computer Scientists. The Electrical Engineers began work on the ATR system in the Fall of 2004, with the Computer Scientists joining the project in the Spring of 2005. In order to satisfy requirements for both the Electrical Engineering facet as well as the Computer Science faucet, some roles were split while others were carried out singly. The roles carried out by each individual are listed below.
Marisol Buelow was the lead for the Electrical Engineering side of the ATR project, as well as being the overall team leader. Marisol served as liaison between the team and the U.S. Air Force, and handled all communication between the team and the sponsor. Marisol was also the primary coder and designer for the preliminary processor.

Jevon Yeretzian was the document coordinator for the Electrical Engineering side of the ATR project. Jevon handled all documents produced to meet the requirements of the Electrical Engineering Capstone class. Jevon was also responsible for all finances associated with the project.

Erica Liszewski was the team lead for the Computer Science side of the ATR project. Erica handled various administrative and organizational tasks, including keeping the team notebook up to date. Erica also handled all documents required for the Computer Science Capstone class.
Geoffrey Fang was the primary designer and coder for the Computer Science side of the ATR project. Geoffrey handled all research and design for the neural network, including building the training and testing sets. Geoffrey also managed the team website.
3.2. Project Management
The team working on the ATR project communicated through emails and weekly meetings. Three meetings were held weekly, barring unusual circumstances. Team meetings were held on Mondays to discuss progress and assign weekly tasks. The team met with a technical advisor, Dr. Phil Mlsna, once a week on Wednesday. The team met with the Computer Science faculty mentor once a week on Thursdays.
Decisions were made differently depending on the magnitude of the decision. Decisions affecting only one module (preliminary processor vs. neural network) were made between the team members involved with that module. Decisions affecting the whole team or overall development were made by the whole teams. Major decisions were usually presented over email and decided in person.
Progress was reported to the team via email, or during one of the weekly meetings. Documents and other tasks involving more than one team member were usually discussed at team meetings, and collaborated via email.
3.3. Design Methodology
The ATR system was designed with two primary modules: the preliminary processor and the neural network. The Electrical Engineers worked on the preliminary processor while the Computer Scientists simultaneously worked on the neural network. The initial design plan would have integrated the preliminary processor and neural network into one seamless program. However, due to slippage (see Section 3.5 Design Timeline) integration was never completed.

The neural network was designed using a spiral methodology. After the initial research involved in working with neural networks was completed, there several iterations of training and testing various combinations of features to determine the most accurate combination. Had more time been available, further iterations of extraction of different features, training, testing, and modification of the neural network would have taken place.
3.4. Deliverables Produced
3.4.1. Computer Science Deliverables

The list of documents written for the Computer Science aspect of the ATR project, and the dates they were completed follows.

· Functional Testing Plans, completed on April 14, 2005. Outlines plan for testing the functionality of the software.
· Software Design, completed on March 30, 2005. Covers detailed design of the software.
· Functional Specifications, completed on March 2, 2005. Defines the functional specifications of the software.
· Coding Standards, complete on February 17, 2005. Defines standards for the code behind the software being developed.
· Requirements Document, complete on February 11, 2005. Outlines requirements the software must meet to satisfy the client.
· Project Development Plan, completed on February 2, 2005. Lays out the plan for completing the software within the semester.
· Team Standards, completed on January 27, 2005. Lays down rules for team interaction and actions taken for violation of rules.
· Team Inventory, completed on January 25, 2005. Introduces the team to the client and identifies strengths and weaknesses.
3.4.2. Electrical Engineering Deliverables
The list of documents written for the Computer Science aspect of the ATR project, and the dates they were completed follows.
· Initial Point Proposal, completed in August 2004. Outlines project for Air Force acceptance

· Final Proposal for Air Force, completed in December 2004.

· Final Status Report, completed in May 2005.
3.5. Project Timeline
The timeline actually followed for the ATR system was quite different than the schedule initially devised. The actual schedule is described below.
February 2, 2005 – Hyperspectral Images Received from U.S. Air Force
February 24, 2005 – Neural Network Obtained

March 28, 2005 – ENVI Software Received from U.S. Air Force

March 30, 2005 – Detailed Design Completed

April 4, 2005 – Jpegs Acquired for Neural Net Training/Testing
April 18, 2005 – Neural Net Training/Testing Set Acquired (from Jpegs)

April 24, 2005 – Training of Neural Net Completed
April 27, 2005 – License for ENVI Received from U.S. Air Force

The cause the majority of the slippage was difficulty obtaining software that would handle the hyperspectral images. There was no software available through the Engineering Department at Northern Arizona University, so the sponsor was asked to provide software. The correct software was not received until nearly two months into the project, and a license for the software was not received until almost the end of the project.

During the production of the Detailed Design, some slippage occurred due to communication problems within the team. While this slippage caused delays in the completion of documents, it had little effect on the overall project schedule.
4. Solution Overview
4.1. Solution as Proposed
The Automatic Target Recognition (ATR) project will search hyperspectral images using three image-processing algorithms to locate and highlight potentially hostile vehicles as targets. A preliminary processing stage will process the hyperspectral images using the Hough Transform, normalized cross-correlation, and hyperspectral analysis. Features extracted from areas highlighted in the preliminary processor as potential targets will be fed into a neural network for classification. The neural network will output a confidence rating for each potential target’s probability of being a hostile vehicle, as well as the pixel location of each potential target. The ATR system will process images quickly and accurately. The ATR system will not eliminate the use of a human operator; just limit the amount of time a human analyst needs to spend locating hostile vehicles. A human analyst will be required only to initialize the process, and to make a final judgment on the neural network classification.
4.2. Functional Specifications
The functional specifications for the ATR system are:
1. Reliability classify hostile vehicles with less than 1% false negatives (failure to classify vehicle as target), and no more than 20% false positives (classifying object other than vehicle as target).

2. Process seven hyperspectral images per minute, using preliminary processor and pre-trained neural network.
4.3. Architecture Overview
The Automatic Target Recognition (ATR) system has two distinct modules, a preliminary processor and a neural network. Standardized images are input into the preliminary processor. The preliminary processor outputs an intermediate text file containing a feature vector. The neural network reads in the intermediate text file, and outputs location and a confidence rating of potential targets. The following is a brief overview of the architecture designed for the ATR system. For more details on the architecture chosen, refer to the Software Design.

Figure 4.3.1 Overall Architecture of the ATR system

Hyperspectral images will be standardized prior to being input into the ATR system. The standardizing will consist of reformatting all images to have a standard pixel depth, contain only layers 5 – 25 (409.75nm – 616.08nm), and be saved in a TIFF format.

In the initial analysis phase, the preliminary processor searches the standardized images for potential target using three separate algorithms. First, the Hough Transform will be used to locate straight-line tracks in the whole image. Second, normalized cross-correlation will be run through the entire image to locate areas that “look” similar to hostile vehicles. Third, the hyperspectral analysis will be run on any area with a high response to the cross-correlation that falls within 10 pixels of tracks found by the Hough Transform. If all three algorithms produce a positive result, features will be extracted from that location. These features will be normalized and output to the intermediate text file.

An intermediate text file is used to pass the feature vector from the preliminary processor to the neural network. One text file will be created for each image processed, and may contain zero or more potential targets. For each potential target, the text file will contain a pixel location and a vector of features extracted from the image at that location. The feature vector will be a list of normalized numbers, where each number represents a measurable feature extracted from the input image.

In the second analysis phase, the intermediate text file is read in and input to a neural network. Neural networks are information processing systems inspired by the structure of the human brain. Neural networks can be “trained” to distinguish patterns in input data. Once a neural network is trained, it can then classify new input data based on the patterns found in training. The neural network in the ATR system will classify the input feature vector as being a target, or not a target. The output of the neural net will be the pixel location of the input feature vector and a confidence rating of that location being a target.

The final output of the ATR system is the pixel locations of potential targets and the confidence rating of each location. Locations and confidence ratings are output to the screen for immediate analysis, and to a text file for later analysis.
4.4. As-Built Design Overview
4.4.1. Preliminary Processor

The preliminary processor works well using MATLAB and ENVI. The issues still needing work are integrating the algorithms into one program, and implementing feature extraction. Feature extraction is the process of extracting information from the image for use in classification. Once the areas of interest have been found using the three independent classifiers features will be extracted from these areas.
4.4.1.1. Hough Transform
The Hough algorithm is used in this system to locate straight lines in an image that may be the tracks of potential targets. Currently, the Hough transform is written in MATLAB and processes grayscale jpeg images. The Hough transform produces an array of values that peak with high correspondence to a straight line. The output that the user sees is a picture of the original image with lines over the areas of high correspondence.
The Hough transform works for finding tracks, but will also find any straight lines within an image. Natural terrain features such as changes in terrain and shadows may cause lines that will be found by the Hough transform. The algorithm is doing exactly what it is supposed to do, however the ATR system is only interested in tracks.
Another problem with the Hough transform is that tanks that could be maneuvered to avoid detection by weaving or zigzagging. The Hough transform will not find these tracks because they are not in a straight line.

The Hough transform will result in many false positives, but few false negatives. The later algorithms used by the preliminary processor will likely not find targets near false positives. The Hough transform does reduce the amount of data for the later algorithms in the preliminary processor.
4.4.1.2. Normalized Cross-Correlation

Normalized cross-correlation looks for areas of high correlation with a tank or truck in the original image. Currently normalized cross-correlation is written in MATLAB and processes grayscale jpeg images. The output that the use sees is a plot corresponding to the original image with areas of high correlation in red. These values are normalized between -1 and 1 with areas of high correlation near 1 and areas of low correlation near -1.
Normalized cross-correlation locates areas with high correlation to what a target should look like. Only areas of high correlation that are within 10 pixels of a line found by the Hough transform are output as potential targets.

4.4.1.3. Hyperspectral Analysis

Hyperspectral analysis looks at the spectral properties of the image to determine if the potential targets are made of steel or depleted uranium, the same type of metal as a tank or truck. Hyperspectral analysis is done in ENVI, and runs on the hyperspectral images provided by the U.S. Air Force. The output of the hyperspectral analysis is a plot of the wavelength of the area evaluated that can be used to determine what material exist at that location.
4.4.2. Neural Network

The neural network is used to classify areas of interest based on characteristics of those areas. These characteristics take the form of features extracted from the image, and input into the neural network for classification. The neural network takes as inputs a text file containing the list of features and an identifier for matching up inputs and outputs. The neural network outputs the identifier and a classification number. More details on neural networks and the format of the text file can be found in the Software Design Document.

The input values are normalized value between the range of -1 and 1. This normalization scheme is used because the activation function is tanh. The wider range of normalized values (when compared to between 0 and 1 for sinh) is more sensitive to very slight changes in the feature values.
The output value of the neural network is initially between -1 and 1 due to the tanh activation function. This number is then normalized to be a percentage between 0 and 1. The output number is a classification number, anything returned by the neural network as > 0.50 (50%) is considered to be a target, while < 0.50 (50%) is considered not a target.
Due to problems obtaining data from the hyperspectral images (See section 3.3 Project Timeline for details) the neural network was designed for use with jpeg (digital) data. The digital images contained toy tanks, as well as various background materials and some toy cars. From these jpeg images, features were extracted to allow training and testing of the neural network. The neural network was trained to classify only the tanks as targets, while the cars and all background materials were classified as non-targets.

The neural network as designed consists of four layers. The first layer known as the input layer consists of four nodes, one for each of the features we are using. Those features are area in pixels, red coefficient, blue coefficient, and green coefficient. The second layer is a hidden layer of 6 nodes. This hidden layer acts an intermediary between the input and output and carries weights to nudge the values so that the output is as expected. The third layer is a hidden layer of four nodes. Like the second hidden layer, this layer contains weights, to assume smooth transition from the input layer to the output layer. The fourth and final layer is the output layer, and consists of one single output node. This is the final value of the neural net, and displays a classification percentage (0-1); the higher the percentage, the higher the classification that the object in question is a target.

5. Testing and Future Work
5.1. Testing and Results
5.1.1. Preliminary Processor Testing and Results

The preliminary processor was tested to verify accuracy in locating potential targets. Each algorithm was tested independently, but overall testing was not completed due to lack of time. Testing for the preliminary processor used 45 hyperspectral images: 10 images from each of the four locations from images provided by the U.S. Air Force, and 5 images found on the internet. The same 45 images were used to test all three algorithms.
The process for testing involved running each image through an algorithm, and physically viewing the image to compare the results. The expected result is compared to the given result and errors are noted.
5.1.1.1. Hough Transform Results
The Hough Transform is used to find tracks in the hyperspectral images. The testing of the Hough Transform yielded many false positives and no false negatives. False positives usually corresponded to abrupt changes in terrain (i.e. shorelines, crop field borders, etc.), or boundaries of terrain happening to fall on a straight line.
5.1.1.2. Normalized Cross Correlation Results
Normalized cross correlation is used to find objects that look like targets. Testing of the normalized cross correlation yielded four false negatives and no false positives. False negatives occurred in cases were the orientation of the target differed greatly from the kernel orientation, or in places were the target was obscured or close to a larger object.
5.1.1.3. Hyperspectral Analysis Results
Hyperspectral analysis is used to find areas containing depleted uranium and steel. Testing of hyperspectral analysis resulted in no errors
5.1.2. Neural Network Testing and Results
5.1.2.1. Size of Testing Set
A testing set of 24 feature vectors were extracted by hand using the same methods as the training set were used as the testing set. These feature vectors contained the same features as the corresponding training set, but were not included in the training set to avoid testing contamination.

5.1.2.2. Selection Process for Features

The selection of features was done to achieve a neural network that met the accuracy requirements of the ATR project. The desired accuracy was <20% false positives, and <1% false negatives, or the bests accuracy achievable. Details on the process used can be found in thee Functional Testing Plans.
In order to select the fewest features while attaining the highest accuracy, features were started off in all possible pairs, and the best were selected for use in triads. The best triads were selected to form the best set of four. In order for a feature set to be considered for the next increment of testing/training, it needed to:

· Train to an error of no more than 20%
· Classify targets with greater than 50% accuracy, and have more than 15% failed classifications (either false positive or false negative).
Using this method, the features were narrow down to the 4 features finally chosen; area, red coefficient, green coefficient, and blue coefficient. The results of each test can be found in Appendix A of this document.
5.1.2.3. Final Testing Results and Error

The final testing set consisted of 24 distinct feature vectors, each consisting of four features, selected by trial-and-error from our original seven features. The final four features were: area, red coefficient, green coefficient, and blue coefficient.

The neural network was able to correctly classify 22 out of 24 total vectors. Both misclassifications were false negatives where the target was in shadow (See Section 5.2.2 Issues Uncovered in the Neural Network for more details). With these results it is calculated that the neural network is 91.6% correct in classification. The goal of the ATR system was >85% correct in classification. The error of the testing set can be generalized to 85% accurate on our testing set. Results on different testing sets may vary, especially if a different method of feature extraction is used.

5.2. Issues Uncovered
5.2.1. Issues Uncovered in the Preliminary Processor

Several issues were discovered in the preliminary processor. These issues are listed below.

· Shadow edges are sometimes found as lines during the Hough Transform.
· Sudden changes in terrain (shorelines, crop fields, etc.) are found as lines during the Hough Transform.

· The Hough Transform will find lines within dense forests between trees.

· Sharp mountain ridges will be classified as lines by the Hough Transform.

· Target near large objects will be missed during normalized cross correlation.

· Targets with orientations drastically different from the kernel will be missed during normalized cross correlation.
5.2.2. Issues Uncovered in the Neural Network

Two issues were discovered during the testing and training of the neural network. One issue was that the 2N rule of thumb did not apply to the neural network used in the ATR system. The second was that once thee best features and internal structure had been determined, the neural network still had difficulty classify targets that were in shadow. Each of these issues is discussed separately below.

 The 2N rule states that the maximum number of neurons (nodes) required to solve a problem is 2 * N where N is the number of input nodes, where all 2N nodes are contained in one hidden layer. Using four inputs, corresponding to the four final features selected, and one output, the classification number, the neural network architecture would be 4 -> 8 -> 1. None of the training sets would train correctly with this type of structure. The action resulting from this issue was to modify the internal structure of the neural network to find one that suited the ATR project. The general rule followed for the ATR neural networks have 2 hidden layers, the first containing 1.5 * N, where N is the number of input nodes, followed by a hidden layer containing N nodes, where N is the number of input nodes. This architecture allowed some training sets that did not train under the 2N architecture to train, and to faster training overall.
During the testing of the final neural network architecture and input features, it was discovered that the neural network had trouble classifying targets that were in shadow. Non-targets were usually classified with a number as low as 0.0%, while targets were usually classified with a number as high as 99% range. Shadowed targets were not classified with a number as low as non-targets, but were classified in the 30% range. No action was taken to resolve this problem as it was discovered late in the testing. Future action may include a better set of features that aren’t as dependant on color, or a different rule of classification where targets are defined to have classification numbers over 10%. Further testing is needed to determine the best course of action.
5.3. Future Work

While the ATR system proved useful in research and education, there is still much to be done to produce a usable system. The neural network and preliminary processor will need to be integrated, but more work will need to be done in both modules before integration can take place. The whole program should be written on one high-level language, with the capability to handle the raw hyperspectral images. The individual neural network and preliminary processor will also need modification before they can be integrated.

Before integration with the neural network, the preliminary processor will need to be integrated into one continuous program. The three algorithms of the preliminary processor will need to be chained into a string of process that each run in turn. Feature extraction will need to be implemented, and integrated to follow the algorithms in the flow of the program. The implementing of feature extraction will require its own testing and refining.

The neural network will need to be trained and designed to classify correctly based on the features extracted from the preliminary processor. Some experimentation with different combinations of features will be required to find the features that provide the best classification. The internal structure of the neural network may need to be modified to provide optimal classification and speed.
6. Conclusion
The final result of the ATR system is not usable as a single system, but pieces of the system may prove useful in future research. While the overall approach (locating areas of interest and then classifying these areas based on their likelihood of interest) taken in the ATR project seems solid, more research is needed to determine if the specific implementation is the best. It is disappointing that much of the research was conducted on “toy” data, however, progress was made and it should not take much time to switch to using hyperspectral images. Overall, the system is an interesting approach to a problem that may have no perfect solution.
Standardized Image

Intermediate Text File (Feature Vectors)

Preliminary Processor

Output Text File

(Locations and Confidence Ratings)

Neural Network

Heimdalls Eyes

5/9/2005

