1. Coding Standards for Heimdalls Eyes

The following coding standards provide an outline for all code to be written by the CS486C team Heimdalls Eyes. Much of this document was taken from standards written by Doug Lea found at http://gee.cs.oswego.edu/dl/html/javaCodingStd.html.

1.1. File Naming Conventions

Each class will be places in a separate file. This applies even to non-public classes (which are allowed by the Java compiler to be placed in the same file as the main class using them) except in the case of one-shot usages where the non-public class cannot conceivably be used outside of its context. The java compiler enforces the convention that file names have the same base name as the public class they define.

1.2. Commenting and Prologue

1.2.1. File and Class Prologue Standards

Begin each file with a comment including:

1. The file name and/or related identifying information including, if applicable, copyright information.

2. A history table listing dates, authors, and summaries of changes.

3. If the file contains more than one class, list the classes, along with a very brief description of each.

4. If the file introduces a principal entry point for a package, briefly describe the rationale for constructing the package.

Write all /** ... **/ comments using javadoc conventions.

Preface each class with a /** ... **/ comment describing the purpose of the class, guaranteed invariants, usage instructions, and/or usage examples. Also include any reminders or disclaimers about required or desired improvements. Use HTML format, with added tags:

· @author author-name

· @version version number of class

· @see string

· @see URL

· @see classname#methodname
1.2.2. Method Prologue Standards

Use javadoc conventions to describe nature, purpose, preconditions, effects, algorithmic notes, usage instructions, reminders, etc. Use HTML format, with added tags:

· @param paramName description. (Note: In alpha versions of Java, this is listed as @arg, not @param.)

· @return description of return value

· @exception exceptionName description

· @see string

· @see URL

· @see classname#methodname
1.2.3. Class Variable Commenting Standards

Use javadoc conventions to describe nature, purpose, constraints, and usage of instances variables and static variables. Use HTML format, with added tags:

· @see string

· @see URL

· @see classname#methodname
1.2.4. General Commenting Standards

Use /* ... */ comments to describe algorithmic details, notes, and related documentation that spans more than a few code statements.

Use Running // comments to clarify non-obvious code. But don't bother adding such comments to obvious code; instead try to make code obvious!

1.3. Symbol Naming Standards

1.3.1. Packages

lowercase.
Consider using the recommended domain-based conventions described in the Java Language Specification, page 107 as prefixes. (For example, EDU.oswego.cs.dl.)

1.3.2. Files

The java compiler enforces the convention that file names have the same base name as the public class they define.

1.3.3. Classes:

CapitalizedWithInternalWordsAlsoCapitalized

1.3.4. Exception class:

ClassNameEndsWithException.

1.3.5. Interface. When necessary to distinguish from similarly named classes:

InterfaceNameEndsWithIfc.

1.3.6. Class. When necessary to distinguish from similarly named interfaces:

ClassNameEndsWithObject

1.3.7. Constants (finals):

UPPER_CASE_WITH_UNDERSCORES

1.3.8. Private or protected variables:

myVar (i.e. prefix with my)

1.3.9. Static private or protected:

twoTrailingUnderscores__

1.3.10. Local variables:

firstWordLowerCaseButInternalWordsCapitalized OR

lower_case_with_underscores

1.3.11. Methods:

firstWordLowerCaseButInternalWordsCapitalized()

1.3.12. Factory method for objects of type X:

newX

1.3.13. Converter method that returns objects of type X:

toX

1.3.14. Method that reports an attribute x of type X:

X getX().

1.3.15. Method that changes an attribute x of type X:

void setX(X value).

1.4. Whitespace and Formatting Standards

1.4.1. Class Declarations, Import Statements, and Package Statements

· No indent, all the way to the right

· Open curly brace on next line, all the way right.

· Closing curly brace at same indent as opening curly brace.

· Import statements and package declarations have no indent.

1.4.2. Methods and Instance Variable Declarations

· Indent two spaces from surrounding class.

· Opening curly brace for method on next line.

· Opening and closing curly braces for method at same indent as method indent.

1.4.3. Curly Braces and Blocks

· All curly braces have their own line.
· Corresponding open and closing curly braces are indented to the same level.
· Statements or nested blocks contained within a block are indented two spaces more than indent of surrounding curly braces.
1.4.4. Statements and Conditionals

· Statements should have their own line, if wrapping must occur the wrapped line will be indented to the same level as the initial line, and a blank line will follow the statement.
· All lines should end with ‘;’, ‘)’ or a curly brace.
2. Version Control for Heimdalls Eyes

An individual will manage version control for Heimdalls Eyes. As Geoffrey Fang will write the majority of the code, he will be responsible for maintaining the current version of the code. Modifications to the code by Erica Liszewski will be sent to Geoffrey for integration.

