
CS 486 – Capstone Project

Project Requirements
(Revision 1.0)

Submitted to
Dr. Doerry

By
Team Fugu:

Erik Wilson
Ben Atkin

Nauman Qureshi
Thad Boyd

On
February 18, 2004

Table of Contents
1Introduction..1
2Problem Statement..1

2.1Astrogeology Program Background..1
2.2Information Technology Issues...2
2.3Value of a Solution..2
2.4Competitive Products...4
2.5Business Environment...4

3Solution Statement..4
4Requirements..6

4.1Project Goals...6
4.2Functional Requirements...7

4.2.1Auto-installer Requirements...7
4.2.2Auto-patcher Requirements..9

4.3Performance Requirements..10
4.4Constraints ...10
4.5Business Philosophy..10

5Feasibility...11
5.1Economics...11
5.2Technical Feasibility..11
5.3Risk Analysis...11
5.4Resource Availability..12
5.5Legal Feasibility..13

Appendix A: Revised BSD License...11

1 Introduction
The purpose of this document is for our team to convey the needs and wants of our
sponsor, the United States Geological Survey (USGS) Astrogeology Research Program,
regarding the requirements for our project – OS Tools for OpenBSD. Additionally, this
document is quintessential in that it forms the basis for all of our future work, including
the specifications and resulting implementation.

The USGS was originally created to perform a unique combination of responsibilities:
"classification of the public lands, and examination of the geological structure, mineral
resources, and products of the national domain.” Our sponsor, the USGS Astrogeology
Research Program, has a rich history of participation in space exploration efforts and
planetary mapping, starting in 1963 when the Flagstaff Field Center was established to
provide lunar geologic mapping and assist in training astronauts destined for the Moon.
The Flagstaff Field Center has been involved with several important NASA missions,
including the Lunar Orbiter and Mars Rover.

To support their robust networking environment there are several dozen enterprise class
servers, many of which run OpenBSD for its renowned security. However, the issue
with using OpenBSD for the USGS is that the installation or upgrading of the operating
system is a manual process, and any security patching must be performed manually as
well. Because of the required administrator interaction the time involved with these
processes becomes greater as the number systems which are present increases. To solve
this problem Team Fugu proposes to automate these tasks which otherwise would be
chronologically inefficient to perform, therefore we will provide the following two
items:

• Automated Installation System for OpenBSD
• Automated Patching Tool for OpenBSD

Team Fugu is excited to be a part of this excellent opportunity to assist the USGS in its
duties as well as the contribution to the development of OpenBSD. We are confident in
our abilities to produce reliable tools which will be effective time savers.

2 Problem Statement

2.1 Astrogeology Program Background
The Astrogeology Research Program is a team of over 80 research scientists,
cartographers, computer scientists, administrative staff, students, contractors, and
volunteers working to support the efforts to explore, map, and understand our solar
system. Fields of particular interest are mapping, planetary geologic processes, remote
sensing and monitoring, and scientific analysis, which leads to answers about our
neighboring planets. Throughout the years, the program has participated in processing
and analyzing data from various missions to the planetary bodies in our solar system,
assisting in finding potential landing sites for exploration vehicles, mapping our
neighboring planets and their moons, and conducting research to better understand the

Page 1

origins, evolutions, and geologic processes operating on these bodies.

These research scientists rely heavily on the Flagstaff Field Center's secure and
powerful networked computing environment. They use many different combinations
of computer models, architectures, operating systems, and custom applications to
perform their research. The system administrators for the Center must in turn build,
secure, maintain, and provide user support for dozens of computer systems. The
Information Technology (IT) department of the Flagstaff Field Center has relied on,
among other operating systems, OpenBSD to provide the critical network services
necessary to run their systems.

OpenBSD is a free Unix variant that is well known for the security that it provides, and
is therefore the preferred operating system for enterprise class servers. In addition to
being more secure, in terms of the number of vulnerabilities discovered compared to
other Unix variants (such as Linux), OpenBSD also provides simplicity, reliability, and
performance. However, the adoption of OpenBSD by the USGS has been slower and
more expensive due to several shortcomings: namely that installations or upgrades, as
well as security patching, must be performed manually.

2.2 Information Technology Issues
Rather than relying on a handful of expensive monolithic servers, the IT department
instead deploys a multitude of smaller inexpensive servers which when combined can
perform the equivalent duties of their larger cousins. However the trade-off is that
when using OpenBSD these smaller servers require manual installation and patching.
The time involved with performing a manual installation is prohibitive to the system
administrator when the process occurs repeatedly. Patching a server also requires
gaining special skills in the form of thoroughly understanding the patching system,
which is unnecessary.

2.3 Value of a Solution
Creating an automated installation and patching system will save many person-hours of
time. Installing OpenBSD on a group of systems should take the time it requires to
create a configuration file and boot the installer, rather than an hour per node. Instead
of spending hours patching systems the administrators will only need to spend the
occasional few minutes checking email to ensure that the automatic patching occurred
successfully. The amount of time it taken for manual installation and patching is as
follows:

(Equation 1)

1hour install1hour patching
month

∗12months

machine
=13hours / year

machine

Repeat this manual process for fifty machines and the equation becomes:

(Equation 2)

Page 2

13hours / year
machine

∗50machines=650hours / year

Assuming the average system administrator is paid $28 per hour the cost per year for
fifty machines using manual processes becomes:

(Equation 3)
650hours / year∗$ 28 /hour=$ 18,200 / year

Using an automated installation for fifty machines would result in the following
equation:

(Equation 4)

2hour setup
5minutes patch verify

month
∗12months

machine
∗50machines=52hours / year

Again assuming the average system administrator is paid $28 per hour the cost per
year for fifty machines using automated processes becomes:

(Equation 5)
52hours / year∗$ 28 /hour=$ 1,456 / year

The resulting monetary savings for using an automated installation is obtained by
taking the difference between the manual costs and the automatic costs for fifty
machines, this is as follows:

(Equation 6)
$ 18,200 / year−$ 1,456 / year=$ 16,744 / year total savings for 50 machines!

In addition to saving time with installations or upgrades, the peace of mind in the
uniformity of security maintenance is invaluable. There is no need to create a checklist
of patched systems, and there is little possibility for human error to occur in the
process. This creates a virtually “hands free” solution for an otherwise complicated
processes.

Page 3

2.4 Competitive Products
There currently aren't any tools that provide a flexible automated installation system
for OpenBSD, although there is one in the planning stage called “BUMPSTART”
which can be found at http://sourceforge.net/projects/bumpstart/. There does however
exist a fairly good patch-management tool, called “Tepatche” (located at
http://www.gwolf.cx/soft/tepatche/), but it needs a number of improvements to meet
our sponsor requirements (especially the addition of the ability to patch from binaries).
Because Tepatche performs most of the basic functionality required for our automated
patcher we will modify it to suite our needs.

2.5 Business Environment

In general regarding server operating systems Unix is becoming more popular and
Microsoft is becoming less popular. The need for automated installation and patching
is always increasing in today's world. Remote administration is taken to the extreme
and often occurs inter-continentally, often times where the capability to ship pre-built
machines is unavailable. The need for our product can easily be found by performing
the following simple Google search for 'openbsd automated installation':
http://www.google.com/search?q=openbsd+automated+installation

3 Solution Statement
The following Use Case Diagram depicts the high-level processes that will occur in
order to use our implemented solution (details are provided on the next page):

(Figure 1)

Page 4

Details for each step of the solution are as follows:

1. Modifying the current manual installation and upgrade system will create the
automated installer.

2. For a class of machines the system administrator will create a configuration file.

3. The system administrator boots the new distribution. Initially, when the installer is
booted there will be approximately a five-second timeout before the installation
begins. During this period the user will be able to press a key and drop to a console,
or do an interactive install.

4. If the automated installation isn’t interrupted, the installer will search for the
configuration file from a variety of locations, and then parse that file.

5. From this configuration file the installer will be able to partition the disk, format the
partitions, configure networking, and install packages.

6. The automated installer will run a post-install script that is obtained from the
configuration file.

7. Initial patches will be installed and the system will reboot into the newly installed or
upgraded OS.

8. The patcher will be a regularly scheduled task, as opposed to a daemon process, to
save system resources and take advantage of the task-scheduling mechanisms
already in place. Most likely, it will be run both as a cron job and using /etc/rc
scripts, so updates will not be missed if a computer is shut off. It will be highly
configurable, allowing for either standard source patches from the OpenBSD FTP
site (and mirrors), or custom binary patches from the local network.

Page 5

4 Requirements

4.1 Project Goals

Upon completion of the project, the following will be provided:

1. The Automated Installer will work by booting from any media and will run
on any platform. The installation should handle partitioning disks, creating
file systems, configuring the network, installing software, and any other task
currently handled by the interactive install. It should also allow pre and post
install scripts for additional software and hardware setup. As part of this tool
the following will be provided:

a. Scripts that can a create floppy and CD disk images with a given
installer configuration file.

b. A sample configuration files to provide a basis for creating new
configurations.

c. An interactive configuration file generating utility may be provided if
time permits.

2. The patch management tool will be capable of installing binary or source
patches from a given URL. This will most likely be derived from Tepatche,
which already provides a good mechanism for downloading and building
source patches. The patch management tool will, like the installer, be able to
handle a configuration file made for a class of systems. As part of this tool
the following will be provided:

a. A package (compressed tar file) containing all of the source code for
the patch manager.

b. Scripts that will install the patch management tool. Once installed it
will check for and install patches, as well as be regularly scheduled
to for the patching process.

c. An interactive configuration script may be provided if time permits,
allowing the user to configure the patcher for such things as
specifying an URL for download of the patches

3. Internet documentation for the two above systems, which will also be
provided in such forms as a man page or README file on the system.

Page 6

4.2 Functional Requirements

4.2.1 Auto-installer Requirements

Team FUGU understands the automated installation tool should fulfill the following
functional requirements:

1. Must be substituted into existing OpenBSD installation environment.

• A tool will be provided to modify the existing source distribution,
which when compiled would provide automated installation
functionality.

• If possible a patch will be provided to modify ISO and floppy
installation images.

2. Must be able to handle either clean install or upgrade and existing OS
installation.

• Installation type can be specified in the configuration file.

• All preexisting functionality of installation or upgrade will be
maintained.

3. Must read an installation configuration from multiple sources.

• The configuration will contain sections related to specific steps of the
installation process.

• Installation will check floppy and CDROM.

• Installation will check FTP and HTTP servers.

• Machine specific configuration files will be searched for.

• If multiple installation files exist a well-defined precedence will be used
to determine which sections of the files to use.

4. Must be able to handle all the installation steps currently performed by
the manual installation process.

• The order for some steps, such as configuring the network, may be re-
ordered to best facilitate the installation.

• Extra functionality for systems such as partitioning the disks may be
provided.

5. The tool must also handle pre and post installation scripts.

• The scripts themselves or locations to these scripts may be provided in
the configuration file.

• These scripts must provide the capability for preexisting files to be
transferred across the network or between partitions.

Page 7

4.2.2 Auto-patcher Requirements

Team FUGU also understands that the automated patch tool should fulfill the
following functional requirements:

1. Arguments can either be passed in on the command line or set in a
configuration file.

• The configuration file will provide all information needed to perform
the patching.

• Optional command line arguments are available to over-ride the
defaults located within the configuration file.

2. It must handle both source and binary patches.

• Locations for source and binary patches will be maintained
independently of each other in the configuration file.

• The correct architecture for binary patches will be selected for
download.

3. Binary patches must be able to run a pre-install, post-install, pre-
uninstall and post-uninstall scripts, and contain install and uninstall
processes.

• In the case of scripts these will be provided within the script itself.

• Install and uninstall functionality will be provided by the patching
system.

4. The patch system must keep track of what patches have been installed.

• This may be maintained within a plain text file per machine, or residing
on a network file system.

• Location of database is determined in configuration file.

5. The system must be able to send an email, using the standard UNIX
mail system, to the system administrator(s).

• Email may be defined to be sent only when patch fails or also when
successful patching occurs.

• Email settings are defined in configuration file.

6. A highly desirable feature is that the tool be able to run in the
installation environment.

• Will occur prior to the post-installation script process.

• Scheduling for patcher may be defined in installation configuration file.

Page 8

4.3 Performance Requirements

Team FUGU understands the OS tools should fulfill the following performance
requirements:

1. User interaction should involve as minimal amount of time as possible.
• An administrator must download, patch, or rebuild an installation

image.
• An administrator must create configuration files for a class of machines.
• Once the installation process begins there should be only a nominal

amount of interaction.
2. There is no requirement for interactive processes to configure the

automated installation or patching systems.
• These servers are used within an enterprise environment, usually

without the use of an X-Windows system.
• Qualified system administrators are capable of configuring the system

without the aid of an interactive process.
3. There is no requirement for the amount of time the automated

installation process must occur in.
• Installation time is dependent on the speed of the processor.
• Installation time is also dependent on the speed of the network.

4. There is no requirement for the amount of time the automated patcher
must apply the patches.

• Patching time is dependent on the speed of the processor.
• Patching time is also dependent on the speed of the network.

4.4 Constraints

One of the main advantages of OpenBSD is that it is easily installed and can run on
legacy systems. The ramdisk installation method requires a minimal amount of
memory to load the ramdisk (approximately 8 megabytes), however there are other
installation methods to circumvent this requirement. OpenBSD can run on Alphas,
HP300 (and above), Intel's i386 (and above), and many other such architectures. This
takes care of most of the hardware constraints. There are no other form of constraints
applicable other than the ones mentioned above.

4.5 Business Philosophy

To encourage future improvements, we are creating this software under the revised
BSD license. This license states all the rights that Team Fugu has under which the
development of automated tools is being done. Redistribution of source code must at
all times bear the copyright notice of Team Fugu. Also the redistribution of the code in
binary form should also bear at all times the stated copyright notice. When products
derived from this software are promoted and endorsed with the names of the authors,
permission prior to that is strictly enforced and suggested.

Page 9

5 Feasibility

5.1 Economics

Our project is expected to save hundreds of person-hours over a period of months.
The bottom line in our project is that it will allow for the installation of multiple copies of
OpenBSD without human input. Ideally, where an administrator would have previously
had to work an hour on each installation, he may now spend an hour on a single
configuration file to be used for all installations.

5.2 Technical Feasibility

We intend to build our project based on existing open-source OpenBSD code, under
the Revised BSD License (see 5.5, legal feasibility). In some places, we expect to rewrite
code from the ground up, and in others we we will merely build on existing code. We
intend to use existing and freely available libraries and sources for as many tasks as
possible.

5.3 Risk Analysis

Risk Description Probability Severity Mitigation Strategy

1. Does not
perform to
standards

Tools do not
perform their tasks
correctly. For
example, installer
does not partition
disk correctly or
patching system
does not update
correctly.

Low Critical Test thoroughly. Make
absolutely sure that
programs perform to
specifications.

2. Interface
unusable

Tools are
inconvenient and
actually increase
operation time
rather than save it.

Low Critical Test early and often.
Communicate with
sponsor and send test
versions for feedback.

3. Cannot back
up existing files

Installation
procedure is only
suitable for
completely wiping
systems and is not
equipped to back
up important files
(SSH keys, etc.)
where necessary

Medium-low High Begin research on this as
soon as possible and ask
sponsor for specifics.
This should be a trivial bit
of coding as long as we
know which files we need
to look for and back up.

Page 10

Risk Description Probability Severity Mitigation Strategy

4. Programs not
fully automated

Tools save
operation time but
still require user
input.

Low High Write code to operate
automatically first and
worry about accepting
user input later.

5. Limited or no
hands-on
functionality

Tools are
completely
automated and do
not allow user
input.

Low Medium Write automatic code first
as it is the priority, but
code expecting to add
user input overrides and
to make doing so as easy
as possible.

6. GUI
incomplete

Tools run only
from command
line, no GUI is
available.

Medium Low As the primary purpose
of our project is to create
hands-off functionality,
GUI generation, while
potentially useful in some
cases (e.g. scheduling for
patching program), is our
bottom priority. We will
only begin work on a
GUI after all project
requirements have been
satisfied, and if no GUI is
completed, our project
can still be considered a
resounding success.

5.4 Resource Availability

We intend to build these tools based on existing code, freely available libraries, and
our own expertise. This is an open-source project and will use only open-source code and
tools.

Our tools must run on Intel i386 and Sun Sparc64 machines. Officially, we will use
the Intel Pentium and Sparc Ultra as our minimum systems, as these machines are much
lower-end than the systems we expect our software to run on, but as our tools are console-
based they do not require sophisticated machines and we expect they would run effectively,
though very slowly, on much older legacy systems.

Each team member is to have an i386 test machine at home, and the team requires
several test machines, both i386 and Sparc64, in the CET building. Test machines are
being provided by the CET IT Department and by USGS where necessary.

5.5 Legal Feasibility

We are confident in our ability to produce a piece of software which is versatile and
powerful enough to become widely used in the OpenBSD world. As OpenBSD developers

Page 11

tend to be hostile toward the GNU GPL (General Public License), we intend to license our
software under the Revised BSD License (Appendix A). This precludes using any GPL
code in our project, as any code derived from GPL works must itself be licensed under the
GPL.

Page 12

Appendix A: Revised BSD License
Copyright © 2004 Team Fugu. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. The name of the authors may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Page 13

