
CS 486 - Capstone

OS Tools for OpenBSD

Overview Presentation
Team Fugu

Team Fugu

• Ben Atkin

• Thad Boyd

• Nauman Qureshi

• Erik Wilson

Fugu: A poisonous blowfish.
The blowfish is the OpenBSD mascot.

Team Roles

• Ben Atkin
– Communicator

– Researcher

• Thad Boyd
– Facilitator

– Webmaster

– Nauman Qureshi
• Recorder

• Documenter

– Erik Wilson
• Team Leader

• Organizer

Client

• US Geological Survey (USGS)
– Astrogeology Team

– Map Landscape of Planets
• Custom software for image processing

• Using high-end UNIX workstations

– Information Technology Division
• Multiple Servers (Mail, FTP, Web)

• Multiple Architectures (x86, Sparc)

Erik Wilson

Problem

• Time-consuming to install OpenBSD on
many systems
– Interactive portion to installation required
– Partitioning of disks is cumbersome

• Patches for OpenBSD require manual
installation on each system
– Administrator must check frequently for

patches
– Uninstall for patches is difficult

• 20 machines x (1 hour install + 1 hour patches)
= 40 hours total

Erik Wilson

Needs

• Need for OpenBSD Auto-Installer
– Need a non-interactive system

– Similar Products: Solaris Jumpstart,

Redhat Kickstart

• Need for OpenBSD Auto-Patcher
– Auto download and install of patches

– Ability to “roll back” or uninstall patches

– Similar Product: Tepatche

• Both must run on i386, Sparc64 platforms
Erik Wilson

Use Case Diagram

Nauman Qureshi

Installer Requirements

• Must be future-version compatible

• Must handle install or upgrade

• Install configuration file must be read from:
– CDROM / Floppy

– FTP / HTTP

– Local hard drive

• Must handle partitioning of disks

• Must seek out and back up important files
(eg SSH keys)

Nauman Qureshi

Patcher Requirements

• Must handle source or pre-compiled
patches

• Must track what patches have been
installed, and what patches have failed to
be installed

Nauman Qureshi

Resources

• OpenBSD installer
– Open-source (Revised BSD License) installation

system

– Based on shell scripting

– Is not currently automated

• Tepatche
– Open-source (Revised BSD License) patching

system

– Based on Perl scripting

– Does not currently handle binary patches

Ben Atkin

Revised BSD License

• Code may be reused, rewritten, or
redistributed in original or compiled form
with or without charge

• Authors' names may not be used to
endorse derivative works without express
written consent

• Standard legal disclaimer

• License must be included with all source or
binaries of software

Ben Atkin

Architecture - Installer

• Derived from existing shell scripts

• Performs similarly to existing installer
– Clean install or upgrade

– Partitions disk

• Adds functionality
– Reads from configuration file

– Backs up required files as needed

Ben Atkin

Architecture - Patcher

• Derived from existing Perl scripts

• Performs similarly to Tepatche
– Will patch from source

– Can remove patches after installation

– Runs on a schedule

• Adds functionality: Will patch from binaries

Ben Atkin

Schedule: Requirements

• 02.18 (today!): Milestone 1.
– Requirements completed

– Functional specifications approaching completion

• 02.25: Final design presentation within
team

• 02.28: Final specification draft submitted to
sponsor

Thad Boyd

Schedule: Implementation

• Week of 02.23: All team members have
running versions of OpenBSD and
Tepatche.

• 03.01: Team coding standards determined.
Begin preliminary coding.

• Week of 03.01: Design review

• 03.05: Software architecture defined
– Individual coding assignments determined

– Coding begins in full force

Thad Boyd

Schedule: Implementation, cont.

• 03.23: Milestone 2, implementation 50%
complete

• 04.13: Design review

• 04.17: Testing plan
– Code functional, integrated

– Test, work out bugs

• 04.28: Capstone presentation prepared

• 04.30: Capstone presentation

Thad Boyd

Schedule: Final Analysis

• 05.03: Notebook, website finalized

• 05.05: Final report

Thad Boyd

Risks: Critical Severity

• Tools do not perform to standards
– Low probability

– Avoid through thorough testing

• Interface unusable
– Low probability

– Avoid through constant testing, communication
with sponsor

Thad Boyd

Risks: High Severity

• Cannot back up existing files
– Medium-low probability

– Avoid through early planning, communication
with sponsor

• Programs not fully automated
– Low probability

– Avoid by coding to read from configuration file

Thad Boyd

Summary and Progress

• Requirements understood

• Examining existing software
– Test machines acquired

– Have installed and run OpenBSD and Tepatche

• Early planning for software design

• Good communication in team, with sponsor

• Enthusiastic

Thad Boyd

