
CS 486 – Capstone Project

Functional Specifications
(Revision 1.0)

Submitted to
Dr. Doerry

By
Team Fugu:

Erik Wilson
Ben Atkin

Nauman Qureshi
Thad Boyd

On
March 1, 2004

Table of Contents
1. Introduction..1

1.1. Executive Summary ..1
1.2. Problem Description..1
1.3. Product Description ..2
1.4. Product Functions..3

1.4.1. Automated Installer...3
1.4.2. Automated Patcher..3

1.5. General Constraints...3
1.6. Assumptions..3

2. Software Architecture Overview..4
2.1. OS Tools for OpenBSD...4
2.2. Automated Installer...4
2.3. Disk Image Creator..5
2.4. Installer Runtime...5
2.5. Automatic Patcher...5
2.6. Installation and Setup Script..5
2.7. Patching Scripts...5
2.8. Runtime Order...5

3. Functional Specifications...6
3.1. Automated Installer...6

3.1.1. Disk Image Creator...6
3.1.2. Configuration Parser...7
3.1.3. Installer Runtime...7

3.2. Automated Patcher...8
4. Use Cases...9

4.1. Installation of OpenBSD..9
4.1.1. Running the Disk Image Creator...9
4.1.2. Booting the Newly Created Disk Image...10

4.2. Maintenance of OpenBSD...11
4.2.1. Automated Patching has Occurred without Error...11
4.2.2. Automated Patching has Occurred with Error..12

5.External Interface Requirements...13
5.1. User Interface...13

5.1.1. Configuration File...13
5.1.2. User Feedback...13
5.1.3. Other Tools..13

5.2. Software Interfaces..13
5.2.1. Launching the Installer..13
5.2.2. Partitioning Tools..14
5.2.3. Network Setup...14
5.2.4. Remote Files..14
5.2.5. RC Scripts for Patcher...14

6.Performance Requirements...14
6.1.Automated Installer..14
6.2.Automated Patcher..15

7. Design Constraints...15
8. Attributes..16

1. Introduction

1.1. Executive Summary
On the 5th of January 2004 the United States Geological Survey (USGS) approached
Northern Arizona University’s (NAU) Capstone Project with an idea of developing OS
tools for OpenBSD. Team FUGU (http://www.cet.nau.edu/~fugu/) was formed in order
to develop this project. USGS is a world leader in the natural sciences through their
scientific excellence and responsiveness to society's needs. The USGS Astrogeology
Program uses OpenBSD due to its renowned security but the costs in time for installation
and maintenance of the operating system is a big drawback.

On the 16th of January 2004 Team FUGU was chosen to develop an automated installer
and an automated patcher for OpenBSD which when developed would alleviate the
USGS of their problems. A requirements document was accepted on the 18th of
February. This document provides a detailed Functional Specification for the proposed
software solution.

1.2. Problem Description
The USGS serves the Nation by providing reliable scientific information to:

• Describe and understand the Earth.
• Minimize loss of life and property from natural disasters.
• Manage water, biological, energy, and mineral resources.
• Enhance and protect our quality of life.

The Astrogeology Research Program is located at the Flagstaff Field Center and contains
a team of over 80 research scientists, cartographers, computer scientists, administrative
staff, students, contractors, and volunteers working to support the efforts to explore, map,
and understand our solar system. Fields of particular interest to them are mapping,
planetary geologic processes, remote sensing and monitoring, and scientific analysis,
which lead to answers about our neighboring planets. Throughout the years, the program
has participated in processing and analyzing data from various missions to the planetary
bodies in our solar system, assisting in finding potential landing sites for exploration
vehicles, mapping our neighboring planets and their moons, and conducting research to
better understand the origins, evolutions, and geologic processes operating on these
bodies.

The Information Technology (IT) department of the Flagstaff Field Center has relied on,
among other operating systems, OpenBSD to provide the critical network services
necessary to run their systems. OpenBSD serves the needs of the USGS, but installation
and maintenance of the operating system is a huge cost in terms of time. The creation of
our proposed installation and maintenance tools will greatly benefit the USGS as well as
the entire OpenBSD community as a whole by saving time for the administrators which
use the OpenBSD operating system.

Page 1

The central requirements of the software are as follows:

• An automated installer will be developed to replace the tedious manual installation
process currently used by OpenBSD.

• An automated patcher will also be developed to keep the operating system up to
date and free of security holes. This function will free the administrator from
patching each computer individually.

The following sections of this document describe our proposed solution and specific
requirements in greater detail.

1.3. Product Description
As indicated in Figure 1, our proposed automated installation and patching processes
involves the following steps:

1. Modify the current manual installation and
upgrade system to create the auto-installer.

2. For a class of machines the system
administrator will create a configuration file.

3. The system administrator boots the new
distribution and there will be approximately
a five-second time-out before the automated
installation begins (during this time the
administrator can drop to a console or
perform an interactive installation).

4. If the automated installation isn’t
interrupted, the installer will search for the
configuration file from a variety of
locations, and then parse that file.

5. From this configuration file the installer will
be able to partition the disk, format the
partitions, configure networking, and install packages.

6. The automated installer will run a post-install script that is obtained from the
configuration file.

7. Initial patches will occur and the system will reboot into the new OS.
8. The patcher will be a regularly scheduled task, it will be run both as a cron job and

using /etc/rc scripts, to ensure updates will not be missed if a computer is shut off. It
will be highly configurable, allowing for either standard source patches from the
OpenBSD FTP site (and mirrors), or custom binary patches from the local network.

The previous steps when implemented comprise our proposed automated process, which
is derived from the current manual process. Please read on to the next section, Product
Functions, for more details as to what capabilities the product will perform.

Page 2

(Figure 1)

1.4. Product Functions
The following two subsections introduce the major functional requirements for the
automated installer and the automated patcher. For further details please see Functional
Specifications in Section 3.

1.4.1. Automated Installer
Upon the completion of the automated installer, it will fulfill the following lists of tasks:

1. Must be substituted into existing OpenBSD installation environment.
2. Must be able to handle either clean install or upgrade an existing OS installation.
3. Must read an installation configuration from multiple sources.
4. Must be able to handle all the installation steps currently performed by the manual

installation process.
5. The tool must also handle pre and post installation scripts.

1.4.2. Automated Patcher
Upon the completion of the automated patcher, it will fulfill the following lists of tasks:

1. Arguments can either be passed in on the command line or set in a configuration
file.

2. It must handle both source and binary patches.
3. Binary patches must be able to run a pre-install, post-install, pre-uninstall and

post-uninstall scripts, and contain install and uninstall processes.
4. The patch system must keep track of what patches have been installed.
5. The system must be able to send an email, using the standard UNIX mail system,

to the system administrator(s).
6. A highly desirable feature is that the tool be able to run in the installation

environment.

1.5. General Constraints
The USGS has placed very few constraints on the development of our tools for
OpenBSD. Through a series of meetings we have been clearly told what the
requirements of the software are and those are the only constraints set upon Team FUGU.
We are open to use any language for the software’s development. OpenBSD can run on
almost any kind of hardware, therefore any hardware constraints are not applicable to our
project.

1.6. Assumptions
Team Fugu is well equipped both hardware wise and skill wise. Our client offered us any
kind of hardware that we might need on the way to the development of our proposed
software solution and this has been accompanied by the assistance of the IT department at
the College of Engineering and Technology (CET). Team Fugu is fortunate in that the
Flagstaff Field Center is close enough to have frequent meetings and the availability of
our sponsor to resolve any potential issues when they arise.

Page 3

2. Software Architecture Overview
This section contains a high-level description of our software product’s architecture, by
organizing the design into packages. A package diagram is shown below as Figure 2:

The following subsections contain a description of each package in the above figure, in top-
down order.

2.1. OS Tools for OpenBSD
We are designing and creating two OS Tools for our client to use with OpenBSD, an
Automated Installer and an Automatic Patcher. While these tools are largely independent,
they interact in that the installer will be able to apply security patches, getting the system
“up to date” before it is booted into and system services are started.

2.2. Automated Installer
The Automated Installer is similar to RedHat Kickstart and Solaris Jumpstart in that after
the configuration file and boot media are properly set up and put into place on the system,
a full install will be made on bootup without any user input. Hard disk partitions are set
up, hardware is set up, software packages are installed, services such as ssh and print
daemons are set up, and any pre-install or post-install scripts specified in the
configuration file are run at the appropriate time.

Page 4

(Figure 2: Package Diagram)

2.3. Disk Image Creator
At the core of the installer is the Disk Image Creator, which parses and validates the
configuration file, and creates a bootable disk image for a given architecture (i386, Sparc,
or Sparc64) that can be written to floppy, CD, or other boot media. It is likely that some
features of the Disk Image Creator will only work on OpenBSD (such as building from
source), but most will work on any type of UNIX workstation.

2.4. Installer Runtime
On the boot media generated by the Disk Image Creator will be an Installer Runtime that
we create, based on the code for the Interactive Install from the OpenBSD website. The
Installer Runtime will use an Orchestrator script, that will determine which Modules are
run, and in what order. The modules will include such things as setting up the network
and setting up partitions, and anything else that can be done by the Interactive Install.

2.5. Automatic Patcher
The Automatic Patcher, our second tool, will have an Installation and Setup
(maintenance) script, and a script which fetches and installs binary and source patches.
The patching tool will be based on Tepatche, which provides part of the tools that our
client needs, but the interface will be redesigned to suit our client's needs, and new
features, especially binary patching, will be added.

2.6. Installation and Setup Script
The Installation and Setup script will install the patcher to disk, and add the Patching
Scripts to the OpenBSD boot scripts and into cron, a task scheduling tool that comes with
OpenBSD and most other UNIX systems. The frequency at which the tool shall be run
will be specified in a configuration file in the installation directory or on the command
line.

2.7. Patching Scripts
The Patching Scripts are comprised of three modules, a Finding and Fetching Module, a
Binary Patcher, and a Source Patcher. The Patching Script can be invoked by the user at
any time, and will be invoked at regular intervals by cron. The script can also be run on
each system boot, and by the installer, ensuring that the system is no more than a day out
of date at any given time

2.8. Runtime Order
The Finding and Fetching Module will be run first, and will find patches on the servers
specified in the configuration file and will fetch only the ones which match the criteria
specified in the configuration file. The Patching Script will run the Binary Patcher or
Source Patcher, as appropriate, for each patch fetched and stored on the disk.

Page 5

The Binary Patcher will apply the patch to a directory, and run a script provided with the
patch.

The Source Patcher will unpack the patch to at temporary directory, set up configuration
files, and run the appropriate make files to build and install the compiled source to the
directory.

The Patching Script will update the information in the packaging system after the patch is
complete. If a patch fails, an error will be sent to a log file and/or an email address, as
specified in the configuration file.

3. Functional Specifications
Functional specifications are given for both the automated installer as well as the automated
patching system. Details on the description, input, process, and output are listed for each
specification.

3.1. Automated Installer
The automated installer consists of a disk image creator, a configuration parser, and
installer runtime. These sections are as follows:

3.1.1. Disk Image Creator
The disk image creator is a command-line utility, written in a scripting language. It
accepts a number of arguments, and has an accompanying man page.

1. Description: The disk image creator will provide options for building floppy disk
images, ISO CD images, and images for booting off the network. This fulfills
requirements 1 and 4 from Section 4.2.1 of the Requirements document.
Input: The current source tree for OpenBSD will be used, as well as patch
modifications for that source..
Process: The source code will be modified using the patch facilities, and then
compiled using the existing Makefiles.
Output: Upon compilation there will exist all of the standard installation media,
including but not limited to: ISO file, floppy disk images, and ramdisk file.

2. Description: The disk image creator will provide an option for validating a
configuration file. This fulfills a postmortem requirement not listed in the original
Requirements document.
Input: The configuration file will be included for the patch process detailed in the
previous requirement.
Process: A predetermined grammar will be used to validate all sections, keys, and
syntax, see the next section, Configuration Parser, for more details.
Output: If the configuration file does not parse into the predetermined grammar
an error will occur notifying the user of the problem and disk image creation will
cease, otherwise a success message will be produced.

Page 6

3.1.2. Configuration Parser
The configuration file parser is responsible for determining that the configuration file is
in the correct format and will be correctly parsed during the automated installer process.
The parser fulfills a postmortem requirement therefore these specifications do not
correspond to any particular requirements in the Requirements document.

1. Description: The parser will be run whenever information is requested from a
configuration file by the installer runtime.
Input: A configuration file name and path will be provided as a command line
argument for the parser, as well as optional section and key arguments.
Process: A static grammar within the parser will determine if the sections, keys,
and syntax are used correctly. This will most likely be accomplished by using
regular expressions facilities found in grep or awk. If a section and key is
provided the parser will additionally locate the associated value.
Output: Depending on the command line arguments given to the parser it will
either return a success or failure code, or the value for a given section and key
argument.

2. Description: The user may invoke the parser on the command line to validate any
configuration files which are created.
Input: A configuration file name and path will be provided as a command line
argument for the parser
Process: The process used will be identical to that of the previous specification.
Output: The parser will return a verbose success or failure code to allow the user
to identify where the error occurred within the configuration file.

3.1.3. Installer Runtime

When the system is booted, the installer will begin with a five-second timeout, where
the user is given the option to drop to a console or perform a manual installation.

1. Description: The installer will be capable of performing either an installation or
upgrade of the operating system based on configurations from multiple sources.
This fulfills requirements 2 and 3 from Section 4.2.1 in the Requirements
document.
Input: Configuration files will be gathered in the following precedence:

1) Start by checking the CDROM and floppy for network configuration.
2) Attempt to locate configuration files defined in the previous precedence for
general system configuration.
3) Attempt to locate machine specific configuration files based on IP address
or host name from CDROM, floppy, disk, and network.

Process: The installer runtime will call subroutines with arguments obtained from
the configuration files which have been parsed by the configuration parser.
Output: The installer will report the progress of the installation on the console
(standard output). See Specification 3 of this section for further output options.

Page 7

2. Description: The installer runtime will run pre and post installation scripts
capable of copying files from hard drives. This fulfills requirement 5 in Section
4.2.1 as well as requirement 6 in Section 4.2.2 of the Requirements document.
Input: The configuration files listed in Specification 1 of this section will provide
pre and post installation scripts and the current functionality of running install.site
and upgrade.site scripts will be maintained.
Process: The configuration parser will be used to extract the pre or post
installation scripts from the configuration files. Hard drives will be mounted prior
to the pre-installation script being executed in order to facilitate copying files
from hard drives.
Output: the results of executing the scripts will be displayed on the standard
output, or possibly by a method described in the next specification.

3. Description: Options will be provided in the configuration file to generate a
logfile based on the standard output, and to e-mail this logfile to the system
administrator (if email has been set up). This specification fulfills a postmortem
requirement not listed in the Requirements document.
Input: The standard output created from Specifications 1 and 2 of this section
will comprise the log file, information from the configuration files will be used to
determine email settings.
Process: The standard output of the installer runtime will be redirected through a
pipe to a log file.
Output: Output will be defined by configuration file, exists in either file form or
sent through email.

3.2. Automated Patcher
As derived from the Requirements document the patching script will fulfill the
following specifications:

1. Description: Tepatche will be modified using ports and packages to provide
binary patch functionality. A single server for each desired architecture will host
the binary patches once they are created. This fulfills requirements 1, 2, 3, and 4
in Section 4.2.2 of the Requirements document.
Input: The Tepatche configuration file or command-line input will be used to
determine what actions the patcher will take (eg: use source or binary patches, if
the computer should host binary patches). Additionally Tepatche will be modified
to ensure it's configuration file can be parsed in the correct grammar, this is
independent of the Configuration Parser listed in Section 3.1.2.
Process: Tepatche will be modified to use the existing ports and package facilities
to create, install, and uninstall binary patches. The patch facility is already
utilized by Tepatche to install and uninstall source patches.
Output: Tepatche will produce a patched system, or if the computer is designated
as a binary server for an architecture it will additionally host the binary patches.
Please see the next specification for more details on the output of the automated
patcher.

Page 8

2. Description: Logs will be kept for the automated patcher with several possible
destinations and verbosity levels of the logging available. This fulfills
requirement 5 in Section 4.2.2 of the Requirements document.
Input: The Teptache configuration file or command line arguments will be used
to determine the verbosity of the desired log. These methods will also be used to
ascertain if the logs should be sent via email to the administrator.
Process: The standard output of the patching process may be redirected to a log
file or a simple success/failure message may be created depending on the
verbosity level desired.
Output: The automated patcher will place a message on the system log, and a
more detailed message in a program log file. Old log files will be rotated. The
logs can be sent to a specified email address.

4. Use Cases
The following sections provide use cases to succinctly describe possible scenarios which
might occur in order to use our product. Sections are provided for the installation and
maintenance of OpenBSD, and subsections exist for each of those sections.

4.1. Installation of OpenBSD
The installation of OpenBSD involves two possible scenarios and their associated sections:
the creation of disk images to be used for a class of systems and the process of booting that
image onto a computer.

4.1.1. Running the Disk Image Creator
Scenario: Bob has been assigned a task by his manager, Ernest, to create an ISO
image which contains the automated installation developed by Team Fugu to be used
with a particular architecture.
Actors: Bob, an entry level IT intern, has rudimentary knowledge of the UNIX shell,
and no knowledge of OpenBSD. Ernest is Bob's manager and he is an experienced
system administrator, he is familiar with the local network configuration, and has an
intermediate knowledge of OpenBSD.

User Steps and system responses:

1. After reading the instructions on Team Fugu's website, Bob downloads the disk
image creator and uncompresses it into a directory.
Explanation: Bob will use the tar utility to uncompress the file into a
subdirectory within his home directory.

2. Ernest modifies the permissions of /usr/src to allow Bob to write to that directory.
Explanation: Only an administrator (root) can modify permissions of this
directory, although the source could be defined to exist in a different directory this
is the most beneficial location for it to live.

Page 9

3. Bob begins the Disk Image Creator script.
Explanation: The script downloads all of the required source packages, and
uncompresses them into the /usr/src directory.

4. Bob is prompted for basic network configuration which the automated installation
uses. Ernest in turn will supply any information which Bob can not provide.
Explanation: The automated installation must know such things as: whether to
use dhcp or static IP configuration, servers and the locations for additional
configuration files.

5. The disk image creator places the network configuration file in the appropriate
place and compiles the source, resulting in an ISO which contains the automated
installation system.
Explanation: The disk image creator patches the source code and uses the
existing Makefile system to create a distribution.

4.1.2. Booting the Newly Created Disk Image
Scenario: Ernest needs to boot the image which Bob created in the previous
scenario to install or upgrade OpenBSD on a computer.
Actors: Ernest is an experienced system administrator, he is familiar with the local
network configuration, and has an intermediate knowledge of OpenBSD. He is also
comfortable with a wide variety of text editors on the UNIX system and accustomed
to editing configuration files.

User Steps and system responses:

1. Ernest reads the instructions listed on Team Fugu's website or in the README
file for booting a disk image. He then records the image onto a CDROM.
Explanation: There is a multitude of third party software available for recording
ISO images onto a CDROM, Ernest has several such utilities available to him and
will select the one which he prefers the most.

2. Ernest uses a text editor to modify example configuration files.
Explanation: The example configuration files provide a comprehensive basis for
all of the possible options definable for the automated installation.

3. After Ernest has created the configuration files for his systems he will run them
through the configuration parser to ensure there are no errors in the files.
Explanation: The configuration parser will ensure that the configuration file has
no syntax errors, if there are any they will be verbosely described.

4. Once Ernest has ensured the configuration files are correct he will place these
files in the network locations which he defined in the previous scenario.
Explanation: The configuration files will be transferred to the location which
was defined in the network configuration for the ISO image to be access via FTP,
TFTP, HTTP, or even disk.

Page 10

5. Ernest places the CDROM into the desired system and boots the computer from
that CDROM. He can then take a break to get a cup of coffee.
Explanation: Ernest may have to configure the BIOS or change the system's
configuration to boot from a CDROM, but as an experienced system
administrator he is familiar with this process. After the CDROM boots there will
be no further interaction required from him so can leave to do something else.

6. The automated installation will prompt for user interaction then continue to locate
and parse the configuration files. The system will continue to perform the
installation or upgrade and once completed may email the administrator if
configured to do so.
Explanation: A more detailed explanation of the automated installation system
can be found in the previous sections.

7. After the automated installation system has completed Ernest can return to
retrieve the CDROM.
Explanation: If the computer was setup to always try to boot from CDROM
Ernest will have to remove it in order to boot the newly installed OpenBSD.

4.2. Maintenance of OpenBSD
Maintaining a newly installed or upgraded OpenBSD system can take on the following
two scenarios: the automated patching has occurred without error, or an error occurred
somehow in the process. These scenarios are listed in the subsections as follows:

4.2.1. Automated Patching has Occurred without Error
Scenario: Bob is in charge of receiving the email for the automated patching system.
He checks his email regularly, at least once a day.
Actors: Bob, an entry level IT intern, has rudimentary knowledge of the UNIX shell,
and no knowledge of OpenBSD. Ernest is Bob's manager and he is an experienced
system administrator, he is familiar with the local network configuration, and has an
intermediate knowledge of OpenBSD.

User Steps and system responses:

1. Bob starts up his favorite email client to check his daily email.
Explanation: It is assumed the email for the automated patcher has been
designated to be delivered to Bob, or Bob has access to the administrator (root)
email account.

2. The success of a patch for each computer has been sent to Bob and the status is
clearly depicted in the subject line for the email.
Explanation: Both the computer host name and the patching status is clearly
displayed in the subject line, eliminating the need for Bob to read the entire
contents of the message.

Page 11

3. On the unlikely occurrence of a failed patch Bob will alert his manager, Ernest, to
the message.
Explanation: Ernest will then perform the steps listed in the next scenario.

4.2.2. Automated Patching has Occurred with Error
Scenario: Ernest has been alerted by Bob as to an error which occurred during the
patching process on some machine. He must analyze and fix the problem for the
computer to remain secure.
Actors: Bob, an entry level IT intern, has rudimentary knowledge of the UNIX shell,
and no knowledge of OpenBSD. Ernest is Bob's manager and he is an experienced
system administrator, he is familiar with the local network configuration, and has an
intermediate knowledge of OpenBSD.

User Steps and system responses:

1. Bob has forwarded Ernest an email created by the automated patching system
which details the output of the attempted patch and the resulting error.
Explanation: Ernest will immediately have knowledge as to which machine the
patching failed on via the contents of the subject line.

2. Ernest will analyze the contents of the message to determine if it was an error with
source or binary patching, which machine, what time, and the cause of the error.
Explanation: For example: in the unlikely event that a partition is full this will be
easy to determine from the contents of the failure email, any cause of error should
be fairly easy to determine and therefore not time consuming.

3. As an experienced system administrator Ernest has several possibilities, however
the first suggested action would be to run the patching system manually on the
machine from command line.
Explanation: If Ernest is unable to determine what the problem is immediately
from the contents of the email then performing a patch manually may provide
insight to the problem simply by watching to process run. If the patching error
occurred using binary patches he should then try using a source patch.

4. If Ernest is still unable to determine the cause of the error as an experienced system
administrator he must access any sources of information available to him in order to
solve the problem.
Explanation: The problems which occur during patching will be verbose enough to
get Ernest started on a path towards a solution for the problem. In the very unlikely
event that there is a problem with the patch itself he can always contact the
OpenBSD forums for assistance.

Page 12

5. External Interface Requirements
There are two parts to the interface, user interfaces and software interfaces. User interfaces
includes all interactive portions, such as configuration and error reporting, and are detailed in
Section 5.1, whereas software interfaces are those which will run automatically, and are
detailed in Section 5.2.

5.1. User Interface
Due to the automated capabilities for our system the amount of desired user interface is as
minimal as possible, however there are some user interfaces which must occur simply by
convention. In particular these user interfaces are with the configuration file, user
feedback, and some other tools that require user interface will be provided if time permits.

5.1.1. Configuration File
The primary user interaction with our program will be through a simple text
configuration file. The file will include user specifications on data backup, partitioning,
file locations, patching schedule, and any other necessary settings.

We will include a well-commented sample configuration file containing common
settings, which will be easy for a sysadmin to modify.

5.1.2. User Feedback
Installation activities will be displayed on the screen and recorded in log files. Any
installation errors will be visible in these formats.

Additionally, the patcher will report any errors by sending E-Mail to root and any other
addresses specified in the config file.

5.1.3. Other Tools
If time permits, we may add graphical tools for such tasks as scheduling the patcher,
generating the config file, and reporting overall progress of installation and patching.

5.2. Software Interfaces
There are several software interfaces which our proposed system must adhere to in order
to function properly, they are described in the following subsections:

5.2.1. Launching the Installer
The installer will run similarly to the current version, but without the interactive
prompts. The installer may be put in any bootable medium, such as a CD, floppy, hard
disk partition,or network drive, and will run at boot time.

Page 13

5.2.2. Partitioning Tools
In the case of a new installation (as specified in the config file), disks will be partitioned
according to settings in the config file. In a format similar to fstab, the config file will
specify the partitions, their locations, sizes (in B, KB, MB, GB, or percent of total disk
size), file systems, and mount points.

5.2.3. Network Setup
Depending on setting in the configuration file, an IP will be assigned to the machine
using DHCP or static assignment.

5.2.4. Remote Files
The OpenBSD installer only includes base files. Additional installation files, to be
specified in the config file, must be transferred from other machines. The config file
will specify an FTP or HTTP server, or an NFS location, from which these additional
files may be retrieved.

5.2.5. RC Scripts for Patcher
The patcher configuration file will include the frequency at which to run the patcher and
a set of valid servers to check for patches.

6. Performance Requirements
Performance Requirements are measurable user and computing performance characteristics.
User performance characteristics are given for common tasks that will be completed using
our product. Because our product consists only of run-once installation scripts and small,
daily run patching scripts, computing performance isn't a concern. While the patching script
can severely impact performance, it is the calling of build scripts, that are outside the scope
of our project, that are a concern. Because of this, the only feasible solution is to educate our
users about the performance advantage of binary patching. The performance requirements for
the two tools are listed here:

6.1.Automated Installer
Four out of five entry-level system administrators should be able to start a customized
automated installation within thirty minutes, without needing to consult any
documentation other than what is provided with the system.

• They shall be able to instruct the installer to set up partitions, as desired.

• Their systems shall have the network, sshd, and the automatic patcher (which are
all optional) working properly upon the first boot.

• They shall be able select which packages are being installed, and understand how to
go about setting up custom packages.

Page 14

6.2.Automated Patcher
The performance requirements for our automated patcher are as follows:

1. Four out of five entry-level system administrators shall be able to set up basic source
patching, fetching the patch files from an OpenBSD web or FTP server, within ten
minutes, without needing to consult any external references.

• The first run of the patcher shall succeed.

2. Four out of five intermediate system administrators shall be able to set up
customized binary patching, downloading pre-built patches from their own web or
FTP server, within thirty minutes. Because this involves the administrator using
multiple programs, needing use external references is acceptable.

• The first run of the patcher shall succeed.

• They shall be able to view a log that the patch install succeeded.

3. Three out of five system administrators, during the setup process, shall have found,
in the documentation or printed on the command-line, a message warning about the
performance implications of source patching.

• The message shall suggest using binary patching on slower systems or systems
where there is demand for high performance at all hours of the day.

7. Design Constraints
One of the main advantages of OpenBSD is that it is easily installed and can run on legacy
systems. The main hardware constraints that are involved are as follows:

• Machines must have minimal of approximately 8 megabytes of memory to load
ramdisk.

• A minimal of 1 gigabyte of hard disk capacity is preferred.

• Intel's i386 and SPARCs are the preferred computer architectures for this project.

USGS is operating on modern machines which leave less room for any hardware constraints
regarding this project. Though the ramdisk installation method is preferred, there are other
installation methods to circumvent the memory requirement such as installing from an
uncompressed image on a partition. OpenBSD can run on Alphas, HP300 (and above),
Intel's i386 (and above), and many other such architectures. This takes care of most of the
hardware constraints. There are no other forms of constraints applicable other than the ones
mentioned above.

Page 15

8. Attributes
Once the automated installer and patcher are developed and running, all of the specified
functions will be thoroughly tested to assure they run perfectly. As mentioned earlier, the
function of the automated patcher will be to keep the systems up to date. Documentation will
be provided in the ‘man’ pages and also in README files.

Along with the documentation, there will be referrals on the website such as the design
document, and many other such helpful documents, from which the client can get help on the
rare occurrence that they encounter a problem.

Page 16

