
CS 486 – Capstone Project

Final Project Report
(Revision 1.0)

Submitted to
Dr. Doerry

By
Team Fugu:

Erik Wilson
Ben Atkin

Nauman Qureshi
Thad Boyd

On
April 30, 2004

Table of Contents
1. Introduction..1
2. Problem Statement...1
3. Process Overview...2

3.1. Team Organization..2
3.2. Project Management..3
3.3. Design Methodology...3
3.4. Deliverables...4
3.5. Timeline...5

4. Project Requirements...7
4.1. Overview..7
4.2. Project Goals..7
4.3. Summary of Functional Requirements..7
4.4. Summary of Performance Requirements...8
4.5. Constraints...8

5. Solution Statement...8
5.1. Overall Solution...8
5.2. Functional Specifications...10
5.3. Architecture Overview...11
5.4. As-Built Design...12

6. Usability Testing and Future Work..15
6.1. Usability Testing..15

7. Conclusion...20

1. Introduction
On the 5th of January 2004 the United States Geological Survey (USGS) approached
Northern Arizona University’s (NAU) Design4Practice program with the goal of developing
two time-saving tools for OpenBSD. The proposed tools would automate two time-
consuming processes that previously required manual interaction under OpenBSD. On the
16th of January 2004, Team FUGU was formed of four capstone students who combined to
develop this project.

A Requirements document was accepted by our client, Ernest Bowman-Cisneros and
Margeret Johnson of USGS, on the 18th of February. Following that, we produced a
Functional Specification document that was accepted on the 10th of March. Based on the
functional specifications, we produced a design document that we delivered on March 15th.

Since the delivery of that document we have been hard at work implementing and testing our
automated installation and patching products. We have completed this phase, and thus
concludes our project. We have created this final report with two main purposes in mind. The
first is to communicate our successes and shortcomings at the end of this project. We do this
by providing an overview of our project requirements, and specific testing results to show to
what level we met these requirements. The second purpose of this document is to show how
we arrived at our destination. To this end, we provide an overview of how we understand the
problem, and the progress of all phases leading up to the completion of our project. This ties
into the last part of the report, where we document how our work throughout the semester
contributed to the quality and completeness of our final solution.

2. Problem Statement
Our sponsors for this project are Ernest Bowman-Cisneros and Margaret Johnson, system
administrators at the Flagstaff Field Station of the United States Geological Survey. The
Flagstaff Field Station serves as the headquarters for the Astrogeology Department of USGS.
The people working there are primarily involved in planet mapping and space exploration.
Their research efforts in these areas place heavy demands on computing infrastructure. To
manage a large number of servers, Ernest and Margaret have learned to work efficiently and
make use of the latest and greatest system administration tools.

These tools include automated OS installers and automated patchers. An automated installer
provides the administrator the opportunity to save time over a conventional installer, by
allowing them to specify the options in a file, rather than type them in at each terminal. When
using a conventional installer, the user answers questions, waits for part of the installation to
finish, and answers more questions. This process makes it hard for them to get any other work
done. With an automated installer, they can spend a few minutes working on the configuration
file, boot a computer, leave, and return to the computer later to find the installation
completed. This makes it easy to install multiple computer systems simultaneously.

Patching is a method used to plug security holes when they are discovered. When there is a
known security hole in the operating system, the computer is at risk. To prevent the system

Page 1

from being compromised, security patches should be installed as soon as possible. Without an
automated patcher, this must be done manually. People often forget to install patches, and
before they get a chance to install a patch their system is compromised. An automated
patcher, however, can be instructed to check every day for a security update. The benefit of an
automated patcher is two-fold: it is more convenient and it provides for better security.

Automated patchers and installers have long been available on Red Hat Linux, SuSE Linux,
and Solaris – three platforms which our client, USGS, often uses. The tools shipping with
these systems work well for our client. The problem is that they would like to increase their
usage of OpenBSD, a free UNIX variant they have become quite fond of, but OpenBSD lacks
these time-saving tools. This is where we stepped in.

They presented us a request for a proposal (RFP), and we researched the problem and
submitted a proposal that matched what they were looking for. We took their recommendation
to start with what was already available, and expand it into a product that matched their needs.
We started with two open-source tools: the standard OpenBSD installer and Tepatche, an
automated patcher that runs as a regularly scheduled task that finds, downloads, and compiles
patches into the system.

We would expand the OpenBSD installer to be able to read configuration files, make some
basic disk calculations, and run pre- and post-install scripts. We would expand Tepatche to
create and download binary patches, a capability it did not have before that was requested in
the RFP. Binary patching allows the code to be compiled only once, and then distributed to
other machines, which streamlines the process.

With our creation of this product according to the principles outlined in the RFP, USGS will
now have the advantages of OpenBSD – security, openness, and simplicity – as well as the
convenience that until now only came with the more established systems. With these tools,
rather than spend an hour patching and an hour installing on twenty machines (2 hours x 20 =
40 hours), they can spend two hours preparing a configuration file and booting the machines.
The rest of the task will be completed automatically. The value of our solution is in the ability
to save hours of time, and the benefit of increased security through regular patching.

3. Process Overview

3.1. Team Organization
Each person on our team was given two special responsibilities. The members and their
roles are as follows:

1. Erik Wilson - Leader and Organizer
Erik is the leader by default. His final decisions can only be overruled if all others vote
against him (simple majority). He also arranges additional meeting times.

2. Ben Atkin - Communicator and Researcher
Ben was given the task of communicating with our client. He also researches things that

Page 2

are important to our project (such as how to use CVS).

3. Nauman Qureshi - Recorder and Documenter
Nauman was given the task of sending out minutes after each of our meetings. He also
kept our project notebook.

4. Thad Boyd - Facilitator and Website Maintainer
Thad's job was to facilitate any arguments that would arise. He also designed and
updated our team website.

3.2. Project Management
At the start of our project, we agreed on some by-laws, that provided structure for our
team, that helped us through our project. We agreed to meetings three times a week.
Nauman agreed to record significant decisions in the meetings, in an e-mail sent to
everyone else in the team. We also created a Gannt Chart to keep track of deadlines. These
made up most of our reporting and monitoring processes. We also had the project
notebook, but most of the time it did not make it to our meetings. Our website and e-mail
partly made up for it.

To keep the project going smoothly, we also agreed on standards of interoperability. We
agreed to send our e-mails in plain text, and to make our documents available in three
different formats. These rules, when properly practiced, simplified the sharing of
information between each other and our client.

We decided on the simple majority rule for making decisions, but it was never used.
Occasionally we got into debates about the design, and when someone suggested putting it
to a vote, the arguing parties agreed to make a compromise.

Regular meetings and minutes helped offset our lack of memos and use of our notebook. If
we had implemented these better, we could have saved a lot of time in the long run.

3.3. Design Methodology
We did not spend a lot of time on the design methodology. Erik wanted to try out
SCRUMS, which is an agile development method, that is focused on removing obstacles
and having better communication, especially with the client. SCRUMS involve “sprints”,
where a team works for 30 day periods, to get part of a project done. There is daily
reporting and a person representing the client is on-site.

We chose to use SCRUMS, but in reality we followed more of a waterfall method. We
didn't do any major coding until the design document was done. We did follow one aspect
of SCRUMS – regular meetings. At our meetings we discussed our progress, and were
able to keep our project on track. We did have some slippage, mainly because we often
focused on short-term goals (such as specific deliverables) rather than long-term
functionality goals. This resulted in us doing less testing than we would have liked.

Page 3

This was the weak point in our project organization. Perhaps we would have done well to
select the waterfall or spiral design methodologies for this part-time working environment.

3.4. Deliverables
Deliverables were used to track our project through completion. We had deliverables that
guided our project from drawing board to implementation. These followed the pattern
below:

Project Requirements Functional Specifications Detailed Design Delivered Product

Each of the deliverables in this category directly built on the previous concept. With each
deliverable, we obtained a better understanding of the final solution we are providing. We
started with the customer concept, by listening to our client give us their vision for the
product. After we understood that, we obtained specific requirements. When creating the
Functional Specification, we determined how we would like our product to work, to best
satisfy the requirements. We moved into the Detailed Design, which we used as a guide to
create our Delivered Product.

The remaining deliverables were designed to streamline our project management and
development processes. These deliverables included our Team Inventory, Team Standards
Document, Project Development Plan, and our Usability and Functional Testing Plans. As
we created the first three documents in this list, we adopted good practices that helped us
in the completion of our project. One of these was version control. We found it very useful
in collaborating on our document, and in not worrying about saving previous versions. The
last deliverable (besides this one) was our Usability and Functional Testing Plans. We used
that in our development process to ensure quality.

We found that each deliverable contributed to our success. We also found that some of our
difficulties could have been adverted had we better applied our documents to our design
and implementation process. The following table provides a basic description our
deliverables, and how they contributed to our success. They also contain brief notes on our
shortcomings with regards to putting the deliverables into practice.

Deliverable Purpose Successes Shortcomings

1. Team Inventory

2004-1-26

Document the skills we have
available to us, as a team, that are
pertinent to this project.

Provided a good
introduction of us to our
client.

2. Team Standards
Document

2004-1-28

Contains rules that will help us
govern our project.

Established regular
meeting schedule. Used
CVS as planned;
worked very well for us.

Poor intra-team
documentation.
Should have been
more specific. Did
not keep up with
self-evaluation.

Page 4

Deliverable Purpose Successes Shortcomings

3. Project Devlopment
Plan

2004-2-2
2004-2-16 (revised)

Decide how to gather
requirements and analyze risks.
Decide which hardware and
software tools to use.

Thought about testing
equipment, and was
able to plan well there.
Set up OpenBSD on a
number of different
computers. Provided
excellent framework for
future documents.

4. Project
Requirements

2004-2-18

Get the project requirements from
the client, and begin to lay out a
plan to achieve them.

Became clear on what
was expected of us.

Did not keep up on
risk management
after document was
complete.

5. Functional
Specifications

2004-3-1

Determine, more specifically,
how the program is expected to
function, including user interface
details.

Better understood
workings of an installer
and a patcher.

Did not reference
often enough.

6. Software Design
Specification

2004-3-15

Create an internal document with
design specifics, that will guide
us while we implement our
program.

Understood installation
and patching, step-by-
step.

Was not fully in-line
with some of our
goals, such as being
able to interrupt the
install. Few things
were kept in the
implementation.

7. Usability &
Functional Testing
Plan

2004-4-12

Determine what will be a part of
usability and functional testing,
and lay out plan to implement it.

Made some needed
usability improvements
beforehand.

Slow to begin
usability tests. Had
little time to make
improvements based
on usability testing.

8. Final Capstone
Report

2004-4-30

Document and analyze the
outcomes of our project.

Better understanding of
engineering process.

???

This table shows a pattern: when we followed the documents, we experienced success. In
retrospect, we decided that it would be a good idea to break out our completed documents
in our meetings. This would have helped us to see eye to eye.

3.5. Timeline
Our project began with creating our team documents and discussing what the project
entails and how best to complete the project. We discussed this with our client on several
occasions in January. By mid February, we had nearly all of our requirements obtained
from our sponsor and had described them in the Requirements document. With half a
month’s time to finalize the design that we intended to use, we were at the end of our first
super sprint. By this time we had started coding, this was in the first week of March. Along
with minor coding, we worked more on our design in order to make it as efficient as

Page 5

possible as we were getting closer to our deadline. With the end of our second super sprint
in the first week of April, we had an almost fully functional product ready to be tested
though with some minor bugs needed to be fixed in it. On the 5th of April we had started to
test our product by drafting up scenarios and playing them out. After we were satisfied
with the basic functionality, we conducted usability testing.

Our timeline of significant events is shown below. Our completion of major functionality,
and our testing each slipped back a full week. Our design document was also a weekend
late. Other than that, we made all of our deadlines. Following the table is an explanation of
why the slippage occurred.

No. Date Event

1 2004-1-21 First meeting with client at USGS Flagstaff Field Station

2 2004-1-26 Completed Team Inventory deliverable

3 2004-1-28 Completed Team Standards Document

4 2004-2-2 Completed Project Development Plan

5 2004-2-16 Revised Project Development Plan

6 2004-2-18 Completed Project Requirements deliverable

7 2004-3-1 Completed Functional Specifications deliverable

8 2004-3-1 Coding Begins

9 2004-3-15 Completed Software Design Specification

10 2004-4-1 Most of the Functionality is Complete

11 2004-4-9 Began Testing for our Products

12 2004-4-12 Created Usability and Functional Testing Plan

13 2004-4-21 Submitted working installer and patcher to client for testing

14 2004-4-23 Capstone Presentation

15 2004-4-30 Completed Final Report

Partly because of our lack of structure in our design methodology, and partly because of
the learning curve that comes with learning a new operating system and two new
programming languages, we did not get any major prototypes working until after the
design document was complete. This made it a strain to get our product complete. We
worked hard at it, however, and got all of the basic requirements complete. From the full
requirements and functional specifications, there are a couple of things that would have
been useful that weren't completed. In retrospect, it would have been better to have put off
some parts until later, and tested our code in smaller modules. If we did, it might not have
taken a couple of days work to satisfy a simple requirement.

Our client, however, is happy with our product. There will no doubt be some bugs to work
out, but it is useful in its present state. We have declared our project to be a success.

Page 6

4. Project Requirements

4.1. Overview
We determined the requirements for our project through frequent team meetings and
frequent communication with the sponsor for refinement and clarification. We
communicated with the sponsor primarily through E-Mail, but met face-to-face on several
occasions as well.

The primary building block for the project requirements was, appropriately enough, our
requirements document, available in our team notebook and on our team website. We
submitted a draft to our sponsors, and then met with them to discuss changes and
refinements to the requirements we had listed.

4.2. Project Goals
The keyword for both projects' goals is automation. We set out to make both projects as
convenient, time-saving, and hands-free as possible. We designed the automated installer
to duplicate the functionality of the existing manual OpenBSD installer but added the
capability of taking input from a configuration file rather than requiring keyboard input
throughout the installation process. For the automated patcher, we updated Tepatche to
handle binary packages. We designed both programs to run on i386 or Sparc architecture,
and believe that they could easily run on other platforms as well.

4.3. Summary of Functional Requirements
What follows is a condensed summary of the major functional requirements we
determined. A more detailed version is available in our requirements document.

4.3.1. Automated Installer Requirements

1. Must be substituted into existing OpenBSD installation environment.
2. Must be able to handle either clean install or upgrade and existing OS installation.
3. Must read an installation configuration from multiple sources.
4. Must be able to handle all the installation steps currently performed by the manual

installation process.
5. The tool must also handle pre- and post-installation scripts.

4.3.2. Automated Patcher Requirements

1. It must handle both source and binary patches.
2. Binary patches must be able to run a pre-install, post-install, pre-uninstall and post-

uninstall scripts, and contain install and uninstall processes.
3. The patch system must keep track of what patches have been installed.

Page 7

4. The system must be able to send an email, using the standard UNIX mail system, to
the system administrator(s).

5. A highly desirable feature is that the tool be able to run in the installation
environment.

4.4. Summary of Performance Requirements
What follows is a condensed summary of the major functional requirements we
determined. A more detailed version is available in our requirements document.

1. User interaction should involve as minimal amount of time as possible.
2. There is no requirement for interactive processes to configure the automated installation

or patching systems.
3. There is no requirement for the amount of time the automated installation process must

occur in.
4. There is no requirement for the amount of time the automated patcher must apply the

patches.

4.5. Constraints
One of the main advantages of OpenBSD is that it is easily installed and can run on legacy
systems. The ramdisk installation method requires a minimal amount of memory to load
the ramdisk (approximately 8 megabytes), however there are other installation methods to
circumvent this requirement. OpenBSD can run on Alphas, HP300 (and above), Intel's
i386 (and above), and many other such architectures. This takes care of most of the
hardware constraints. There are no other forms of constraints applicable other than the
ones mentioned above.

5. Solution Statement
In this section we outline our completed solution. We begin with an overview of our
solution. Following that we document how we arrived at our solution with a functional
specifications summary and a summary of the design in our design document. We
conclude with an as-built statement.

5.1. Overall Solution
Our solution was to modify two existing products, the OpenBSD installer and Tepatche, to
meet our sponsor's needs.

5.1.1.Automated Installer

Modified from the original shell scripts of the existing OpenBSD installer, our automated
version allows for the same functionality of a series of prompts and adds a number of

Page 8

features. Most importantly, our automated installer will answer the prompts based on
settings provided in a separate configuration file. However, thinking in terms of
integration with the OpenBSD project as a whole, we went above and beyond this sponsor
requirement and added an optional interactivity feature: at every prompt, a timeout in
seconds may be specified in the configuration file, and until that timeout elapses, the user
may interrupt the interactive install and choose a custom option.

This is best demonstrated in the screenshot below (5.1), which shows a series of prompts
with default options specified in brackets and timeouts specified in parenthesis. For
example, the line that reads,

DNS domain name? (e.g. 'bar.com') [localdomain] (timeout=1)

will choose the default, “localdomain”, unless the user presses the Enter key before the 1-
second timeout elapses and enters a custom option.

Page 9

 5.2. Manual Installation and Maintenance 5.3. Automatic Installation and Maintenance

5.1. The automated installer in action.

The automated installer solves the problem of time-consuming system installation. By
generating a single configuration file for installing multiple machines simultaneously
(figure 5.1), the system administrator is able to specify installation settings in a fraction of
the time it would take with a fully manual installation (in figure 5.2).

5.1.2.Automated Patcher

Our automated patcher is modified from the original Tepatche Perl scripts coded by
Gunnar Wolf. The key features we kept from Mr. Wolf's version are the ability to read
settings from a configuration file (tepatche.conf) and the ability to download, apply, and
compile source patches. The major functionality we added was the ability to package
these compiled binaries in OpenBSD's .tgz package format and choose to install such
binary packages rather than source patches.

The patcher solves the problem of time-consuming system maintenance, and solves the
problem of repeated compilation inherent in the original Tepatche. Run as a cron job, our
patcher will keep the system updated without requiring user input, and, with our
extensions, can install existing binary patches rather than being limited to the wasteful
process of patching and compiling each program from source.

5.2. Functional Specifications
Here we provide a quick overview of the functional specifications for our product. These
are listed in groups, by the tool they pertain to.

1.1.1. Automated Installer

1. The automated installer shall be able to do a fully automated installation or upgrade
of a system.

2. The automated installer shall work on i386, Sparc, and Sparc64.

3. The automated installer shall be able to download configuration files from multiple
locations, including ftp.

4. The automated installer shall be capable of everything that the standard OpenBSD
installer is capable of.

5. The automated installer shall provide the option to run pre- and post-install scripts.

1.1.2. Automated Patcher

1. The automated patcher shall be able to create binary patches from source
downloaded off OpenBSD mirrors.

2. The automated patcher shall be able to download binary patches from an FTP server.

3. The automated patcher shall be run as a regularly scheduled task.

Page 10

4. The automated patcher shall be able to handle source patching.

5. The automated patcher shall get its options from a configuration file.

These are taken from the Functional Specifications document. We communicated with our
sponsor to obtain these functional specifications, and they shall serve as a measure of the
success of our project. The above functional specifications are covered in the functional
testing section of this document.

5.3. Architecture Overview
This section provides a brief summary of the architecture we proposed in the Software
Design Specification.

1.1.3. Automated Installer

The Installer Runtime installs an OpenBSD system using information provided in a
configuration file, as well as decision trees carefully researched, implemented, and tested
by our team, to guide the process. The modular design is depicted in the image below:

As depicted above the dot.profile script is used to determine whether to launch the
install.sh, upgrade.sh, or auto_inst.awk script. The automated process will use the
config_parser.awk script to access the values from the configuration files which it finds.

The Installer Runtime has a large number of dependencies. It depends on the kernel to
properly recognize devices. It depends on the networking programs to help it to
determine the proper network interface and get the network up. It also depends upon the
partitioning and slicing tools. The building and adding of these things to the disk images
will be taken care of by the disk image build scripts. For the Installer Runtime to work, it
is important that the Disk Image Builder compile all the tools and place them in the right
locations.

1.1.4. Automated Patcher

The following Figure 12 depicts the overall interactions within Tepatche:

Page 11

 Title:H:\cs486\docs\eew6\Installer-Cla
 Creator:Dia v0.92.2
 CreationDate:Mon Mar 15 13:51:14 2004

(Figure 6: Automated Installer Builder Class Diagram)

As depicted above Tepatche is divided into three distinct parts: a Binary module, a Source
modules, and the Main module. Several important functions are depicted in the previous
classes:

• The ability to download source tarballs if they are needed.

• The ability to download source or binary patches as needed.

• The application to the system of those patches.

• The ability to create a binary patch given that the source is patched.

Tepatche will be installed during the post-install phase listed in Section 5.2.6 and will
be run as root during a periodic cron job. A configuration file will also be used for
Tepatche in which the script will determine which patching type it will perform (binary
or source), if it should host binary patches, as well as various other configuration
options such as logging level and email address to send messages to.

5.4. As-Built Design

5.4.1. Automated Installer

5.4.1.1. Overview

We built the automated installer from the source code of the original interactive
installer, licensed under the BSD license. We designed our code to be run in basic
shell script, using the minimal ramdisk environment provided by the original
installer. All of the programs available in this environment can be contained on a
floppy. Programs such as perl and awk were not available; we had to use a mix of
shell and sed.

After looking in detail at the source code of the original installer, we saw that the
logic for getting input from the user was simple and uniform. Two subroutines
beginning with “ask” handled most input situations. One took a single value from the
user, optionally providing a default value, which could be selected by pressing the
enter key. The other subroutine allowed the user to select from a list of values.

Page 12

 Title:H:\cs486\docs\eew6\Tepatche-Clas
 Creator:Dia v0.92.2
 CreationDate:Mon Mar 15 15:46:20 2004

(Figure 12: Tepatche Class Diagram)

After thinking about it for a while, we decided to co-opt the reading of a
configuration file into the existing interactive installer script. We modified the “ask”
routines to wait for a time specified in the configuration file, allowing the user to
press enter and type the in value manually, before timing out and going with the
“default”. The “default” in this case is taken from the configuration file, using a
section and key name, as the third and fourth parameters in the “ask” routines. If that
value is not specified in the configuration file, it takes the second parameter in the
ask routine to be the default.

This worked for many simple options. We chose sensible section and key names for
these options. To do the actual reading from the configuration file, we wrote a sed
script. We wrote another sed script that converts a string into a case-insensitive
regular expression, allowing section and key names to be case-insensitive. All of
these features were provided in our “util.sub” module.

We created another module, “disks.sub”, to handle the complex task of properly
allocating disk space, based on values specified in the configuration file. This works
by reading options from the configuration file to determine which OpenBSD “slices”
(disk partitions, such as partitions for /usr or /home) go on each disk. To determine
what disks are available, it uses the boot messages. Once the locations of slices are
determined, the sizes are determined. This is done by reading the size options from
the configuration file, and disk geometry from the disklabel command, and
performing some calculations on them. The calculations are written in shell, which
only has integer support, so there is an integer scaling function. After the geometry is
fully decided, a disklabel, specifying the partitioning information, is added for each
disk. When that is loaded, formatting of filesystems is done, device driver instances
are created, mounting information is stored, and disks are mounted.

The installer (install.sh, upgrade.sh, install.sub) has loops for input, so we found
ways to deal with those. These loops are present in the networking and filesets
(programs to be installed) sections. We created loops of our own, that go through all
values in the configuration file.

We also added pre- and post-installation script capabilities, as well as the ability to
run our patcher from within the automated installer. We were able to satisfy all of
the basic requirements.

We added a little script that was not a part of our original design – a CGI script to
display the results of an installation on the Internet.

What we ended up with is a complete automated installer, that can work from boot to
reboot, and can handle a variety of different configurations. Our sponsor tested it
about two weeks ago, and they were pleased.

5.4.1.2. Modules

The modules included in our final design are as follows:

1. util.sub
Contains utility subroutines, such as retrieving the configuration file, reading the

Page 13

configuration file, and logging the installation.

2. disks.sub
Contains code to determine the configuration and geometry for the OpenBSD
slices that will be created on the fixed disks. A non-interactive process; it cannot
be interrupted, either the disk setup must be fully automated or fully interactive.
This is because the interaction is handled by disklabel, which is difficult to script
with our minimal environment.

3. install.sh
A long script, executing commands in an order that will leave the user with an
automated install. For many parts, we simply added a section and a key to allow
the installer to read from a configuration file. For some of the more involved
parts, we created a custom loop.

4. upgrade.sh
Similar to install.sh, but upgrades a system without effecting user documents.
Uses “ask” routines to read from a configuration file.

5. install.sub
Contains subroutines, and subscripts common to the installer and the upgrader.
These include subroutines for loading the network and installing filesets.

6. install.md
Modified to add room for the Master Boot Record on the i386 platform, while
utilizing the full disk on the Sparc64 platform.

5.4.1.3. Changes from Original Design

Because we decided to simply co-opt the reading of the configuration file, we lost
some of the structure behind our old design. We moved from having five of our own
modules to having the ones shipping with the interactive installer plus two of our
own.

One thing that did not get built was the configuration file validator. We did,
however, design our code to accept reasonable defaults if something could not be
found. None of the human errors we encountered during usability testing would be
prevented by using a validator.

We also decided to stick with the original Makefiles for building disk images, as
they work well for most tasks.

For the most part, our design was on par with the design document. We created
special routines for setting up of disks, and for everything else, orchestrated the
loading of values from the configuration file and the running of programs with the
correct parameters to complete an installation automatically.

Page 14

5.4.2. Automated Patcher

6. Usability Testing and Future Work

6.1. Usability Testing
Our usability testing strategy is three-fold. We have functional tests, usability tests, and
acceptance tests. The three types of tests are closely related. The functional test is a test we
complete ourselves, to determine which required functionality is working. The usability
tests are done as an extension of the functional test, to see if the basic functionality can be
completed by someone who is new to our product, with minimal documentation. Finally,
the acceptance tests are tests that our client takes, to know how satisfied they are with our
product.

6.1.1. Functional Tests

When we first completed a successful automated installation, the functional testing
period for our automated installer began. This was on April 9. Coincendentally, our first
successful binary patch was on April 9 as well, and so began the functional testing for
our automated patcher. Following is a chart with specifications taken from functional
specifications section within our solution statement. The chart displays who
administrated the latest test for each specification, and what the outcome was.

No. Product Test Conducted By Outcome

1

Automated
Installer

The automated installer shall be able
to do a fully automated installation
or upgrade of a system.

Ben Successful

2
Automated
Installer

The automated installer shall work
on i386, Sparc, and Sparc64.

Ben Successful

3

Automated
Installer

The automated installer shall be able
to download configuration files from
multiple locations, including ftp.

Erik Successful

4

Automated
Installer

The automated installer shall be
capable of everything that the
standard OpenBSD installer is
capable of.

Ben Successful

5

Automated
Installer

The automated installer shall provide
the option to run pre- and post-install
scripts.

Ben Successful

6

Automated
Patcher

The automated patcher shall be able
to create binary patches from source
downloaded off OpenBSD mirrors.

Erik Successful

Page 15

No. Product Test Conducted By Outcome

7

Automated
Patcher

The automated patcher shall be able
to download binary patches from an
FTP server.

Erik Successful

8
Automated
Patcher

The automated patcher shall be run
as a regularly scheduled task.

Erik Successful

9
Automated
Patcher

The automated patcher shall be able
to handle source patching.

Erik Successful

10
Automated
Patcher

The automated patcher shall get its
options from a configuration file.

Erik Successful

11 2004-4-9 Began Testing for our Products Successful

12
2004-4-12 Created Usability and Functional

Testing Plan
Successful

13
2004-4-21 Submitted working installer and

patcher to client for testing
Successful

14 2004-4-23 Capstone Presentation Successful

15 2004-4-30 Completed Final Report Successful

As we completed this test, we brought our product closer to being usable. These were
an important part of the development process.

6.1.2. Expert Review

The software that we developed will require more than just basic knowledge of
computers to operate it. Because installing and maintaining UNIX style operating
systems are more in-depth than other operating systems, we require that our expert
reviewer be more trained in the system administration aspects in order to correctly
operate this software. For this reason Tom Baca, the IT manager for the College of
Engineering was chosen for the expert review. The process occurred by taking notes on
his opinion of the configuration files, utilities, and run of the installation and patching.
The following is a list of the major suggestions which he made:

1. The logging website should have indicators on the main site for each computer if
there have been any errors, if the installation is in progress, or if it has been
completed.

2. The logging website should list the log entries in reverse chronological order.

3. The logging website should combine the question and the answer into a single
entry on the log.

4. The logging website should have separators indicating different installations.

5. The logging website should provide a summary of the status for the last
installation at the top of the page.

6. The configuration file for the automated installation should have greater detail on

Page 16

the disk partitioning section (i.e. better comments).

7. When the installation completes the automatic rebooting of a system should be
optional because some systems will restart the installation process, depending on
their BIOS capabilities.

All of the suggestions for the configuration file and installation systems were taken into
account and enacted. Our reviewer thought that the most useful tool was the installation
logging system, which he offered many suggestions for improvement to the user
interface. Ultimately the changes for the installation logging system never occurred due
to time limitations and that the logging system was a tertiary part of the project. Any
changes to the installation logging system have been left to the next revision of the

6.1.3. Usability Tests

The main objective of testing our product before handing it over to the client is to
ensure that our product is fully functional and bug-free. To avoid the mishap of an
unusable product we had created three testing groups who would be conducting the
assessment studies for the program. The following were the groups which participated
in the studies:

Group 1) Brian Adams, Shanadeen Begay

Group 2) Daniel Headly, Scott Hancock

Group 3) Jay Anderson, Erica Liszewski

The intention of these groups were to engage in constructive interaction without the aid
of any designer or facilitator intervention. Each group was allotted approximately 15
minutes to perform their tasks. To best simulate realistic domain tasks the following
items consisted of our lab manual:

Scenario

You are a system administrator for the United States Forest Service in Flagstaff, AZ.
At one of their stations research is being done about the effect of bark beetles on our
ecosystem. To help with computing power, they need six OpenBSD systems to be
installed. You will be using the OpenBSD automated installer to complete this task.

Tools Available

A virtual computer is made available for testing using VMware. You will need to push
play to boot it up. The physical floppy disk will be used on the virtual system, but

Page 17

when you boot it up, make sure all files and directories on the floppy are closed.
Otherwise, the virtual machine will not be able to secure full control of the floppy
drive.

In VMWare, when you start the virtual machine, the output will be shown in a virtual
console in the window. To type into the virtual console, click inside the screen. To
type elsewhere, press CTRL and ALT at the same time, and release.

To edit the file on the disk, use NoteTab. Windows and UNIX files are incompatible,
because Windows files use an extra character to separate lines. NoteTab, unlike
notepad, which ships with Windows, is equipped to handle this.

There is a log application at http://www.cet.nau.edu/~fugu/log/logger.pl. Read the log
here.

List of Instructions

1)Modify the hostname to be 'rex' in the network section.

2)Modify the configuration file under the “Disks” section to partition a disk with a
500 megabyte swap, 1 gigabyte root partition, and the remaining space allocated to the
home partition.

3)Under the “Tepatche” section define the appropriate key to use your email address
as the location to send logging messages for the patching process.

4)Close the editor for the configuration file and any other programs that make use of
the floppy disk. If any are open, the virtual machine will not be able to use the floppy,
to read the configuration file.

5)Start the virtual machine, by clicking the play button in the VMWare.

6)From the installation logging website (http://www.cet.nau.edu/~fugu/log/logger.pl)
monitor the progress of the install.

7)When the installation has been completed please record the number of errors and the
severity of the errors from the installation logging website.

8)From the email address defined in step 3 check our email to view the patching log.
Record how many and the types of errors which occurred.

The results from the tests were interesting, these results are listed for each pertinent step
as follows:

Step 1)
All teams were able to successfully complete the first step of modifying the
hostname without any issues, this suggests that the configuration file format was

Page 18

trivial to navigate.

Step 2)
The first team was presented with a disk configuration which was almost identical to
the desired configuration with the exception of different geometries (disk sizes).
They were able to successfully make the requested changes to the configuration file.

To complicate the process the next two teams were given configurations containing
an extra partition. The teams did not remove the extra partitions but the second team
did correctly configure the disk geometry. This suggests that further instructions
needed to be given in the instructions or the configuration file, or that the groups
lacked the system administration skills needed to identify the change that needed to
be made.

The last team was given a further modified configuration file with the extra space
going to a partition other than the desired one. They were able to successfully
modify the geometry for the swap partition, however, the extra partition was not
removed, the size of the root partition was not changed, and the remaining space was
not correctly allocated to the home partition. These issues are however most likely
due to their limited Unix administration experience and were not taken into
consideration for revising.

Step 3)
All teams were able to successfully complete step three. This reinforces our findings
from step 1, that the configuration file was easy to navigate.

Step 6)
The teams were able to successfully navigate the installation site. All of the teams
attempted to view the installation logs before the network for the installation was
brought up. This created some confusion for the teams attempting to monitor the
progress of the installation. The teams often had to reload the logs manually as there
was no mechanism for automatic refreshing (this will be left to the next revision of
the software). The teams mostly monitored the progress of the installation as it
occurred in front of them. Further information about the installation logging is
provided in the next section.

Steps 7 & 8)
These steps encompass the acceptance tests and are discussed in the next section.

In addition to these issues one participant of the tests was noted as saying: “Where is
my spinning cursor or progress bar indicator thing, that is what I am used to.” While

Page 19

OpenBSD has never provided for a progress indication facility it seems like a
worthwhile addition to the installation environment, maybe for the next version. The
next section will discuss the Acceptance Tests of our software.

6.1.4. Acceptance Tests

The acceptance tests were given to all three teams as they were relatively short tests.
The purpose of our products is to save time, and as an addendum the need to review log
files is a necessity for the automated processes which occur. Our goal was for the
groups to be able to analyze the installation logs on the Internet and the patching logs
from their email, and then record the number and type of errors in under 30 seconds for
each of the installation and patching logs. On average the results were much lower,
about 20 seconds, but there are several things to take into consideration about the
relevance of this test:

1. The logs did not include any simulated errors which might occur during the
process.

2. There existed no summary of the installation logs or to view the logs by the
severity of entries. There might be a possibility for a single error message to
become lost among all of the other entries.

3. Paranoid system administrators may not be confident in the logging facilities to
accurately depict any errors which occur so they might check the validity of the
installation or patching systems manually.

The patching logs were relatively short and easy to manage, but the above items might
be fixed adding further enhancements to both the Internet logging for the installation
and email logging for the patching. Additionally the patching logs might be better
placed on the Internet also. Furthermore the usability tests did depict a reasonable
layout for the configuration files which should assist the users of our product in a
speedy alteration of the configuration file for their systems.

7. Conclusion
We believe that, in this project, we have created two projects which have a wide range of
application not only for our sponsors but for the international OpenBSD community. We
developed the projects with an eye for this larger scope, and, while time has yet to tell
whether our installer and patcher will become common OpenBSD tools, we are confident
that the community will recognize their value.

The project went very well and, while there were some rough spots and we were not able
to achieve all the functionality we would have liked (a few applications such as TFTP
support were abandoned), we are proud of the work we have done and happy to have our
names attached to this work. Our sponsor is satisfied with the final product, and we
eagerly await review from the OpenBSD community.

Page 20

