
CS 486 – Capstone Project

Coding Standards
(Revision 1.0)

Submitted to
Dr. Doerry

By
Team Fugu:

Erik Wilson
Ben Atkin

Nauman Qureshi
Thad Boyd

On
March 3, 2004

Table of Contents
1. Executive Summary..1
2. File Naming Conventions...1
3. Prologue Standards...1

3.1. File Prologue Format..2
3.2. Module Prologue Format...2

4. Symbol Naming Standards...2
5. Commenting Standards...3
6. Whitespace Standards...3

6.1. Indentation..3
6.2. Blank Lines...4

7. Version Control and Organization..4

1. Executive Summary
On the 5th of January 2004 the United States Geological Survey (USGS) approached Northern
Arizona University’s (NAU) Capstone Project with an idea of developing OS tools for
OpenBSD. Team Fugu (http://www.cet.nau.edu/~fugu/) was formed in order to develop this
project. USGS is a world leader in the natural sciences through their scientific excellence and
responsiveness to society's needs. The USGS Astrogeology Program uses OpenBSD due to its
renowned security but the costs in time for installation and maintenance of the operating
system are a big drawback.

On the 16th of January 2004 Team Fugu was chosen to develop an automated installer and an
automated patcher for OpenBSD which when developed would alleviate the USGS of their
problems. During the course of developing this product each programmer will, of course, have
his or her own preferences in regards to formatting, but there are some general guidelines that
will make our programs easier to read, understand, and maintain. The purpose of this
document is to provide those coding standards that will be beneficial to legibility, but in
addition will improve our ability to test, debug, and integrate during the development process.

2. File Naming Conventions
File names will be lowercase, with words separated by underscores (e.g. file_name.sh). The
extension of a file will be indicative of the type of script which is being run (e.g.: .sh, .pl, .awk),
but if a script resides within the executable path of a user it is okay to omit the extension (e.g.:
“tepatche” instead of “tepatche.pl”, because it resides in /usr/local/sbin). The names of files
should be mnemonic, in other words they will be descriptive without being excessively wordy.
For example, the following are bad ways to name a file such as the one which would parse
configuration files for the automated installer:

parser.awk – This is too short, what is it parsing?
automated_configuration_parsing_program.awk – Obviously too descriptive.

However, some good examples are as follows:

auto_conf_parser.awk – Understandable what auto means and conf is configuration.
install_parser.awk – The parser is used in the context of an install, this is okay.

As a general rule of thumb if the name is shorter than 8 characters or longer than 24 it might be
a good idea to try and find a better name, however sometimes this may be unavoidable.

3. Prologue Standards
We will be using prologues, for the purpose of better understanding each file and each module
(function or procedure), and so the source will be easier to browse. Revision histories will be
omitted from the prologues, as this will be maintained by the version control software, please
see Section 7 for more details. The following two sections describe prologues for files and for
modules in greater detail:

Page 1

3.1. File Prologue Format
The file prologue will immediately follow the shebang line (“#!/usr/bin/sh”,
“#!/usr/bin/perl”, or “#!/usr/bin/awk”), where applicable, and will use the following
format:

#!/usr/bin/sh

file: file_name.sh
author: Joe Slinger
last modified: 2004.01.14
description:
A one or two sentence description will go here. Longer
introductions will follow the license if needed.

As stated above the revised BSD license will be included with every file, an example of
this license can be found at http://www.cet.nau.edu/~fugu/.

3.2. Module Prologue Format
Modules are smaller parts of files such as functions or procedures, and therefore will have
descriptive features as to the inputs and return values, in example:

name: log_error
author: Joe Slinger
input: text of log, date
return value: 0 for failure, 1 for success
description:
A one or two sentence description will go here.

Name, author, and revision history will also go in the CVS changelogs for each file. These
will be backed up and preserved.

4. Symbol Naming Standards
Variables will also be lowercase with underscores separating words. Global variables will be
descriptive but should also be mnemonic and not excessively verbose. For example, we want
to create a global variable which will indicate if the log file has been locked or not, some bad
variable declarations are as follows:

int log_file_lock_indicator_for_log_error = 0; – Obviously too descriptive.
int lflifle = 0; – Meaningless to other developers, always avoid using acronyms.

However some good examples are:

int log_lock = 0; – Other developers understand it is related to logging and locking.
int locked_log_file = 0; – Even more descriptive yet not excessively.

Comments better describing global variables will be included, see the next section for more
detail. Local variables will have short but sensible names, with optional comments for clarity.
Variables which are very short lived, such as counters for loops, may be very terse (e.g., the
variable i), as their purpose is obvious.

Page 2

5. Commenting Standards
Functions and lengthy control structures will be preceded by a comment describing what they
do, and their purpose. Comments will be added for clarity, but excessive commenting will be
avoided. Any comment should also avoid simply repeating the code, but instead be more
suggestive as to the purpose of that code. The following is a bad example of how to comment
a global variable:

Integer variable to lock the log
int log_lock = 0;

The previous example is too terse and does not provide any additional insight to that variable.

A much better example is:

log_lock is used by 'flock' in write_log to avoid race conditions
Initializing to 0 assumes the log file is not locked
int log_lock = 0;

The previous example describes exactly what context the variable is used in and why it needs
to be initialized to that value.

6. Whitespace Standards
Whitespace, while not necessary in the languages we're using, makes it easier for humans to
read code. Spaces before the open-parentheses and after commas make a program easier to
read, but more importantly rules for indenting and using blank lines need to be specifically
adhered to. For this reason we are making the following requirements for indentation and
blank lines in our code:

6.1. Indentation
Perl and manual pages have indentation guidelines, that we chose to adhere to. For the
shell scripts used in the installer, and the Makefile for the patcher, we chose to use the
indentation that is used for the code we are deriving from, for consistency's sake. Here are
the indentation standards for each type of source file:

File Type Indentation Characters Reasoning

Perl Scripts (patcher) 4
Perl standard, used in current
Tepatche source.

Shell scripts (installer) 8
Used in interactive install.
Common for shell scripts and
Makefiles.

Manual pages 8 Standard for UNIX man pages.

These guidelines will be strictly adhered to. Anyone using an editor with configurable
indentation may need to customize their indentation to get it working. This is easy to do
on most advanced text editors, such as vi and emacs.

Page 3

6.2. Blank Lines
Blank lines should be used between functions and major control sections to improve
readability. Excessive use of blank lines should be avoided simply because this tends to
reduce the legibility, therefore the number of blank lines used should be limited to three.

7. Version Control and Organization
We have set up a CVS repository, and sent out basic CVS posting instructions. We will set up
WebCVS for source browsing, and a CVS server (which is not necessary to use CVS, but
makes it more convenient).

All source files will be committed to our CVS version-controlled repository. This will allow us
to track the revisions of our code, and will allow us to go back and look at old code when
needed. It is required that with each commit to CVS, the person posting it write a short
description of the changes that were made.

Page 4

