Capstone Presentation

Team Fugu

and the

OpenBSD Tools Project

{2

Team Fugu: Cast of Characters

The Team
Ben Atkin
Thad Boyd
Erik Wilson
Nauman Qureshi
The Discipline
Computer Science
The Technical Advisor
Dr. Eck Doerry

The Sponsor
USGS Astrogeology Team

Ernest Bowman-Cisneros and Margaret Johnson

Thad Boyd

The Story Thus Far:

»What Is OpenBSD?

— UNIX-based operating system
— Open-source
— Secure

»What’s With the Fugu?

Ay, Fugu: A poisonous blowfish.
W%

The blowfish is the
OpenBSD mascot.

Fugu mascot designed by
Jon Gardner.

Thad Boyd

S The Client

»US Geological Survey (USGS)

— Astrogeology Team

— Map Landscape of Planets
« Custom software for image processing
 Using high-end UNIX workstations
— Information Technology Division
« Multiple Servers (Mail, FTP, Web)
« Multiple Architectures (x86, Sparc)

Thad Boyd

Problem

»Time-consuming to install OpenBSD on
many systems

»Patches for OpenBSD require manual
Installation on each system

Unpatched

» 20 machines x (1 hour install + 1 hour patches)
= 40 hours total

Thad Boyd

Diagram: Manual Maintenance

OpenBSD Servers

KN KAKXK

Administrators

Thad Boyd

Needs

> Two Projects

» OpenBSD Auto-Installer

— Need a non-interactive system

— Similar Products:
Solaris Jumpstart, Redhat Kickstart

» OpenBSD Auto-Patcher
— Auto download and install of patches

— Abillity to “roll back” or uninstall patches
— Similar Product: Tepatche

» Both must run on Intel i386,
Sun Sparcé4 platforms

Thad Boyd

Diagram: Automatic Maintenance

OpenBSD Servers

N

O

A

Administrator
Thad Boyd

Installer Requirements

»Must be future-version compatible
»Must handle install or upgrade

»Install configuration file must be read from:
— CDROM / Floppy
—FTP/HTTP
— Local hard drive

»Must handle partitioning of disks

»Must seek out and back up important files
(eg SSH keys) S

Thad Boyd

Patcher Requirements

»Must handle source or pre-compiled
patches

»Must track what patches have been
iInstalled, and what patches have failed to
be installed

Thad Boyd

Automated Installer

» Traditional Installer
1. Boot installer
2. Answer questions
3. Reboot into installed system

» Automated Installer
1. Create configuration file
2. Boot installer
3. Install is done automatically
4. Reboot into installed system

Ben Atkin

Installer Configuration File

»Can be loaded from disk or network

»Contains information for
— Network

— Partitioning disks

— Filesets

— Pre-install script

— Post-install script

»Designed to be user-friendly
— Case insensitive (“disks” or “Disks”)

— Divided into sections
Ben Atkin

Installer Configuration File

» Do not need to know specifics when making
configuration file

»One configuration file used for computers with
differences in hardware

— Different device names

— Different disk geometry

»Disk geometry

— For security, there are separate filesystems for
web, e-mall, documents

— Filesystems should be organized to get best use-of:
space =y

Ben Atkin

Installer: Disk Partitioning

»Partition a “class” of systems
»May contain one or two disks
»Configuration File:

[Disks]

Disks=Main Homedisk
Main.Device=primary
Homedisk.Device=secondary primary
Main.Slices=root usr var tmp swap
Homedisk.Slices=home

extra=home usr

usr .min=2gb Ben Atkin

Installer: Disk Partitioning

»System 1
— One 8GB Hard Disk
8 GB I M \ﬂ

»System 2
— One 8GB Hard Disk
— One 40GB Hard Disk

lusr

Ben Atkin

Architecture: Installer

»Based on existing Automated Installer scripts
» Additional subroutine files

— disks.sub (disk partitioning)

— util.sub (reading from configuration files)

»Only uses programs contained in Interactive
Installer media (that can fit on a floppy)

»Coded in sh and sed

» Perl| used for:

— Configuration file validator
— Online monitoring utility

Ben Atkin

Automated Installer: Features

» Allow options to be entered manually,
upon request

»Works on i386, SPARC64

»Internet Monitoring
»Simple web page for logs

» Configuration File Validator
»Build custom disk images

Ben Atkin

Screenshot

DHCPACKE from 192.168.56. 254
NHew Metwork Huwmber: 192.168.56.8
New Broadcast Address: 192. 168.56.255
bound to 192.168.56.131 —— renewal in 988 seconds.
Mo more interfaces to initialize.
ONS domain name? (e.g. 'bar.com’) [localdomainl (timeout=1)
— Pres=s iEnter: for Manual Input -
DN3S nameserver? (IP address or ‘vnone’) [192.168.56.21 (timeout=1)
Press i1Enter: for Manual Input -
the nameserver now? [yl (timMeout=1)
Press i1Enter: for Manual Input -
Default route? (IP address, 'dhcp’ or ‘none’) [dhcpl (timeout=1)
— Press iEnter: for Manual Input -
Edit hosts with ed? [n] (timeout=1)
— Press iEnter: for Manual Input -
Do you want to do any manual metwork configuration? [nl] (timeout=1)
— Press iEnter: for Manual Input -
Manually configure the disks? [n] (timeout=1)
— Press iEnter: for Manual Input -
preparing wd8. ..
Putting all of wdB into an active OpenBSD MBR partition (type 'AG6’)...done.
using MBR partition 3: type A6 off B3 (Bx3f) size B385867 (Bx7ff54b)
1 a B3 2448369 ff=s ~
2 b 2448432 449568 swap =wap

Ben Atkin

Tepatche

» Originally created at UNAM (Universidad Nacional
Autonoma de México) by Gunnar Wolf

» Runs as a regularly scheduled task
» Checks for security patches on the Internet
» Source Patching

— Downloads source
— Compiles source into machine code

» Our task:

— Contact Gunnar Wolf for implementation ideas
— Add binary (machine code) patching ability
— Make other needed improvements

Nauman Qureshi

Architecture: Tepatche

»Derived from existing Perl scripts
»Divided into modules
»Performs similarly to Tepatche

— Will patch from source

— Can roll back patches after installation
— Runs on a schedule

»Uses OpenBSD package facility for
Binary Patching

Nauman Qureshi

Architecture: Tepatche

Tepatche::Source

+download src(): bool
+apply src patch(): bool

\ 4
Tepatche::Binary

+apply bin patch(): bool
+create bin patch(): bool
+make psuedo tree(): bool

Nauman Qureshi

Tepatche::Main

+main ()
+read config()
+download patches()

Functionality: Tepatche

» Functions the Patcher will
perform:

— Reads the configuration file.

— Connects to the stated FTP
server to download any new
patches.

— Applies security patches to the
machine.

Nauman Qureshi

Design Paradigm

»Based on SCRUM
»Frequent meetings

»Scrum uses sprints
— 30 day focus sessions

»Qur experience

— Sprints were shorter for our team, because of the
short duration of our project

— Sprints were slightly less effective
— Frequent meetings were helpful

Nauman Qureshi

Project Timeline

»2/18 Requirements Document Complete
»3/05 Coding Begins

»3/15 Design Document Complete

»4/05 Product Mostly Working

»4/10 Testing Begins

>>4/23 Design Presentation

>4/25 Submit Product to Client for Testing
»>5/3 Submit Final Product

Nauman Qureshi

Project Difficulties

»Installer
— TFTP (Trivial File Transfer Protocol)
— Disk Partitioning
— Limited tools
»Patcher
— Learning PERL
— Tepatche restructuring
— Using package facility

Erik Wilson

Project Successes

»Major Functionality Complete o~
»|nstaller

— Disk partitioning works

— Automated installation works
»Tepatche

— Bugs fixed

— Binary capabillities exist

Erik Wilson

Project End Result

»Client is pleased with the functionality of the
product.
— Minor bugs need fixing.
— Update to reflect changes in OpenBSD 3.5

»Documentation of functionality
— Web FAQs.
— UNIX style manual pages.

Erik Wilson

Project Exhibition & Demo

College of Engineering & Technology

Room 269
1:45 - 3:00

Erik Wilson

Questions

Erik Wilson

