
1

Capstone Presentation
Team Fugu

and the

OpenBSD Tools Project

2

Team Fugu: Cast of Characters

The Team
Ben Atkin
Thad Boyd
Erik Wilson
Nauman Qureshi

The Discipline
Computer Science

The Technical Advisor
Dr. Eck Doerry

The Sponsor
USGS Astrogeology Team
Ernest Bowman-Cisneros and Margaret Johnson

Thad Boyd

3

The Story Thus Far:

What Is OpenBSD?
– UNIX-based operating system

– Open-source

– Secure

What’s With the Fugu?

Fugu: A poisonous blowfish.

The blowfish is the
OpenBSD mascot.

Fugu mascot designed by
Jon Gardner.

Thad Boyd

4

The Client

US Geological Survey (USGS)
– Astrogeology Team

– Map Landscape of Planets
• Custom software for image processing

• Using high-end UNIX workstations

– Information Technology Division
• Multiple Servers (Mail, FTP, Web)

• Multiple Architectures (x86, Sparc)

Thad Boyd

5

Problem

Time-consuming to install OpenBSD on
many systems

Patches for OpenBSD require manual
installation on each system

 20 machines x (1 hour install + 1 hour patches)
= 40 hours total

Thad Boyd

Unpatched Patched

6

Diagram: Manual Maintenance

Thad Boyd

7

Needs

Two Projects
OpenBSD Auto-Installer

– Need a non-interactive system

– Similar Products:
Solaris Jumpstart, Redhat Kickstart

OpenBSD Auto-Patcher
– Auto download and install of patches

– Ability to “roll back” or uninstall patches

– Similar Product: Tepatche

Both must run on Intel i386,
Sun Sparc64 platforms

Thad Boyd

8

Diagram: Automatic Maintenance

Thad Boyd

9

Installer Requirements

Must be future-version compatible

Must handle install or upgrade

Install configuration file must be read from:
– CDROM / Floppy

– FTP / HTTP

– Local hard drive

Must handle partitioning of disks

Must seek out and back up important files
(eg SSH keys)

Thad Boyd

10

Patcher Requirements

Must handle source or pre-compiled
patches

Must track what patches have been
installed, and what patches have failed to
be installed

Thad Boyd

11

Automated Installer

 Traditional Installer
1. Boot installer

2. Answer questions

3. Reboot into installed system

 Automated Installer
1. Create configuration file

2. Boot installer

3. Install is done automatically

4. Reboot into installed system

Ben Atkin

12

Installer Configuration File

Can be loaded from disk or network

Contains information for
– Network

– Partitioning disks

– Filesets

– Pre-install script

– Post-install script

Designed to be user-friendly
– Case insensitive (“disks” or “Disks”)

– Divided into sections
Ben Atkin

13

Installer Configuration File

Do not need to know specifics when making
configuration file
One configuration file used for computers with

differences in hardware
– Different device names
– Different disk geometry

Disk geometry
– For security, there are separate filesystems for

web, e-mail, documents
– Filesystems should be organized to get best use of

space
Ben Atkin

14

Installer: Disk Partitioning

Partition a “class” of systems

May contain one or two disks

Configuration File:
[Disks]

Disks=Main Homedisk

Main.Device=primary

Homedisk.Device=secondary primary

Main.Slices=root usr var tmp swap

Homedisk.Slices=home

extra=home usr

usr.min=2gb Ben Atkin

15

Installer: Disk Partitioning

System 1
– One 8GB Hard Disk

System 2
– One 8GB Hard Disk

– One 40GB Hard Disk

8 GB

/ /home/usr

/var

/tmp

swap

8 GB

/ /usr

/var

/tmp

swap

40 GB

/home

Ben Atkin

16

Architecture: Installer

Based on existing Automated Installer scripts
Additional subroutine files

– disks.sub (disk partitioning)
– util.sub (reading from configuration files)

Only uses programs contained in Interactive
Installer media (that can fit on a floppy)
Coded in sh and sed
Perl used for:

– Configuration file validator
– Online monitoring utility

Ben Atkin

17

Automated Installer: Features

Allow options to be entered manually,
upon request
Works on i386, SPARC64

Internet Monitoring
Simple web page for logs

Configuration File Validator

Build custom disk images

Ben Atkin

18

Screenshot

Ben Atkin

19

Tepatche
Originally created at UNAM (Universidad Nacional

Autonoma de México) by Gunnar Wolf
Runs as a regularly scheduled task
Checks for security patches on the Internet
Source Patching

– Downloads source

– Compiles source into machine code

Our task:
– Contact Gunnar Wolf for implementation ideas

– Add binary (machine code) patching ability

– Make other needed improvements

Nauman Qureshi

20

Architecture: Tepatche

Derived from existing Perl scripts
Divided into modules

Performs similarly to Tepatche
– Will patch from source

– Can roll back patches after installation

– Runs on a schedule

Uses OpenBSD package facility for
Binary Patching

Nauman Qureshi

21

Architecture: Tepatche

Tepatche::Source

+download_src(): bool
+apply_src_patch(): bool

Tepatche::Binary

+apply_bin_patch(): bool
+create_bin_patch(): bool
+make_psuedo_tree(): bool

Tepatche::Main

+main()
+read_config()
+download_patches()

Nauman Qureshi

22

Functionality: Tepatche

Functions the Patcher will
perform:
– Reads the configuration file.

– Connects to the stated FTP
server to download any new
patches.

– Applies security patches to the
machine.

Nauman Qureshi

23

Design Paradigm

Based on SCRUM

Frequent meetings

Scrum uses sprints
– 30 day focus sessions

Our experience
– Sprints were shorter for our team, because of the

short duration of our project

– Sprints were slightly less effective

– Frequent meetings were helpful

Nauman Qureshi

24

Project Timeline

2/18 Requirements Document Complete

3/05 Coding Begins

3/15 Design Document Complete

4/05 Product Mostly Working

4/10 Testing Begins

4/23 Design Presentation

4/25 Submit Product to Client for Testing

5/3 Submit Final Product

Nauman Qureshi

25

Project Difficulties

Installer
– TFTP (Trivial File Transfer Protocol)

– Disk Partitioning

– Limited tools

Patcher
– Learning PERL

– Tepatche restructuring

– Using package facility

Erik Wilson

26

Project Successes

Major Functionality Complete

Installer
– Disk partitioning works

– Automated installation works

Tepatche
– Bugs fixed

– Binary capabilities exist

Erik Wilson

27

Project End Result

Client is pleased with the functionality of the
product.
– Minor bugs need fixing.

– Update to reflect changes in OpenBSD 3.5

Documentation of functionality
– Web FAQs.

– UNIX style manual pages.

Erik Wilson

28

Project Exhibition & Demo

College of Engineering & Technology

Room 269

1:45 – 3:00

Erik Wilson

29

Questions

Erik Wilson

