
1

Capstone Presentation
Team Fugu

and the

OpenBSD Tools Project

2

Team Fugu: Cast of Characters

The Team
Ben Atkin
Thad Boyd
Erik Wilson
Nauman Qureshi

The Discipline
Computer Science

The Technical Advisor
Dr. Eck Doerry

The Sponsor
USGS Astrogeology Team
Ernest Bowman-Cisneros and Margaret Johnson

Thad Boyd

3

The Story Thus Far:

What Is OpenBSD?
– UNIX-based operating system

– Open-source

– Secure

What’s With the Fugu?

Fugu: A poisonous blowfish.

The blowfish is the
OpenBSD mascot.

Fugu mascot designed by
Jon Gardner.

Thad Boyd

4

The Client

US Geological Survey (USGS)
– Astrogeology Team

– Map Landscape of Planets
• Custom software for image processing

• Using high-end UNIX workstations

– Information Technology Division
• Multiple Servers (Mail, FTP, Web)

• Multiple Architectures (x86, Sparc)

Thad Boyd

5

Problem

Time-consuming to install OpenBSD on
many systems

Patches for OpenBSD require manual
installation on each system

 20 machines x (1 hour install + 1 hour patches)
= 40 hours total

Thad Boyd

Unpatched Patched

6

Diagram: Manual Maintenance

Thad Boyd

7

Needs

Two Projects
OpenBSD Auto-Installer

– Need a non-interactive system

– Similar Products:
Solaris Jumpstart, Redhat Kickstart

OpenBSD Auto-Patcher
– Auto download and install of patches

– Ability to “roll back” or uninstall patches

– Similar Product: Tepatche

Both must run on Intel i386,
Sun Sparc64 platforms

Thad Boyd

8

Diagram: Automatic Maintenance

Thad Boyd

9

Installer Requirements

Must be future-version compatible

Must handle install or upgrade

Install configuration file must be read from:
– CDROM / Floppy

– FTP / HTTP

– Local hard drive

Must handle partitioning of disks

Must seek out and back up important files
(eg SSH keys)

Thad Boyd

10

Patcher Requirements

Must handle source or pre-compiled
patches

Must track what patches have been
installed, and what patches have failed to
be installed

Thad Boyd

11

Automated Installer

 Traditional Installer
1. Boot installer

2. Answer questions

3. Reboot into installed system

 Automated Installer
1. Create configuration file

2. Boot installer

3. Install is done automatically

4. Reboot into installed system

Ben Atkin

12

Installer Configuration File

Can be loaded from disk or network

Contains information for
– Network

– Partitioning disks

– Filesets

– Pre-install script

– Post-install script

Designed to be user-friendly
– Case insensitive (“disks” or “Disks”)

– Divided into sections
Ben Atkin

13

Installer Configuration File

Do not need to know specifics when making
configuration file
One configuration file used for computers with

differences in hardware
– Different device names
– Different disk geometry

Disk geometry
– For security, there are separate filesystems for

web, e-mail, documents
– Filesystems should be organized to get best use of

space
Ben Atkin

14

Installer: Disk Partitioning

Partition a “class” of systems

May contain one or two disks

Configuration File:
[Disks]

Disks=Main Homedisk

Main.Device=primary

Homedisk.Device=secondary primary

Main.Slices=root usr var tmp swap

Homedisk.Slices=home

extra=home usr

usr.min=2gb Ben Atkin

15

Installer: Disk Partitioning

System 1
– One 8GB Hard Disk

System 2
– One 8GB Hard Disk

– One 40GB Hard Disk

8 GB

/ /home/usr

/var

/tmp

swap

8 GB

/ /usr

/var

/tmp

swap

40 GB

/home

Ben Atkin

16

Architecture: Installer

Based on existing Automated Installer scripts
Additional subroutine files

– disks.sub (disk partitioning)
– util.sub (reading from configuration files)

Only uses programs contained in Interactive
Installer media (that can fit on a floppy)
Coded in sh and sed
Perl used for:

– Configuration file validator
– Online monitoring utility

Ben Atkin

17

Automated Installer: Features

Allow options to be entered manually,
upon request
Works on i386, SPARC64

Internet Monitoring
Simple web page for logs

Configuration File Validator

Build custom disk images

Ben Atkin

18

Screenshot

Ben Atkin

19

Tepatche
Originally created at UNAM (Universidad Nacional

Autonoma de México) by Gunnar Wolf
Runs as a regularly scheduled task
Checks for security patches on the Internet
Source Patching

– Downloads source

– Compiles source into machine code

Our task:
– Contact Gunnar Wolf for implementation ideas

– Add binary (machine code) patching ability

– Make other needed improvements

Nauman Qureshi

20

Architecture: Tepatche

Derived from existing Perl scripts
Divided into modules

Performs similarly to Tepatche
– Will patch from source

– Can roll back patches after installation

– Runs on a schedule

Uses OpenBSD package facility for
Binary Patching

Nauman Qureshi

21

Architecture: Tepatche

Tepatche::Source

+download_src(): bool
+apply_src_patch(): bool

Tepatche::Binary

+apply_bin_patch(): bool
+create_bin_patch(): bool
+make_psuedo_tree(): bool

Tepatche::Main

+main()
+read_config()
+download_patches()

Nauman Qureshi

22

Functionality: Tepatche

Functions the Patcher will
perform:
– Reads the configuration file.

– Connects to the stated FTP
server to download any new
patches.

– Applies security patches to the
machine.

Nauman Qureshi

23

Design Paradigm

Based on SCRUM

Frequent meetings

Scrum uses sprints
– 30 day focus sessions

Our experience
– Sprints were shorter for our team, because of the

short duration of our project

– Sprints were slightly less effective

– Frequent meetings were helpful

Nauman Qureshi

24

Project Timeline

2/18 Requirements Document Complete

3/05 Coding Begins

3/15 Design Document Complete

4/05 Product Mostly Working

4/10 Testing Begins

4/23 Design Presentation

4/25 Submit Product to Client for Testing

5/3 Submit Final Product

Nauman Qureshi

25

Project Difficulties

Installer
– TFTP (Trivial File Transfer Protocol)

– Disk Partitioning

– Limited tools

Patcher
– Learning PERL

– Tepatche restructuring

– Using package facility

Erik Wilson

26

Project Successes

Major Functionality Complete

Installer
– Disk partitioning works

– Automated installation works

Tepatche
– Bugs fixed

– Binary capabilities exist

Erik Wilson

27

Project End Result

Client is pleased with the functionality of the
product.
– Minor bugs need fixing.

– Update to reflect changes in OpenBSD 3.5

Documentation of functionality
– Web FAQs.

– UNIX style manual pages.

Erik Wilson

28

Project Exhibition & Demo

College of Engineering & Technology

Room 269

1:45 – 3:00

Erik Wilson

29

Questions

Erik Wilson

