Circuitscape Gene Flow Simulator

Software Specifications

[image: image1.png]
Rev. 1.0

3/15/04

Sean Collins

Katie Rankin

Mike Schulte

Carl Reniker

Table of Contents

Introduction

pg. 1

Software Overview

pg. 1

Phase 1 Software Specifications
pg. 3

Phase 2 Software Specifications
pg. 5

Phase 3 Software Specifications
pg. 6

Phase 1 Class Diagrams

pg. 8

Phase 2 Class Diagrams

pg. 11

Phase 3 Class Diagrams

pg. 14

1. Introduction

The purpose of the Circuitscape project is to develop a convenient and easy to use software program for calculating genetic conductivity between animal populations based on their habitat. Genetic conductivity is degree to which genetic information can flow between animal populations. This is useful as both for practical applications such as conservation planning and more theoretical working in the field of population genetics. The conductivity will be calculated using a new method that draws on concepts from electrical engineering to treat the habit as a grid of resistors. The advantage of this method is that it can produce highly accurate calculation for large data sets. Existing methods for calculating this data such as geographic distance and Markov chain will also be included for comparison.

2. Software Overview

2.1. Language

The software will be coded entirely in Java for the following reasons:

· Ease of GUI implementation

· Platform independence makes the product accessible to more users

· Developers are highly skilled with this language

2.2. Development Phases

The development of the software is broken down into 3 phases that correspond to the 3 levels of functional requirements. At the end of phase, a working program will be produced that has all the functionality up to the current level of requirements. For example, at the end of phase 2 the program should fulfill all primary and secondary requirements. The purpose of this breakdown is to ensure a useful product is produced even if time constraints prevent all features from being implemented.

2.1. Modules

2.1.1. GUI Module

The purpose of the GUI module is to provide a convenient interface for users to select options. These options are parameters for the calculations and the names and locations of data files. This information is passed to other modules through method calls and the global variables in the Parameters class.

The place of the GUI module in the architecture is the top-level module that calls the other modules in response to user interactions.

2.1.2. Reader Module

The purpose of Reader module is to read in ASCII text files generated by other programs. The current concern is for GIS and MS Excel files but other formats could be supported in future versions. The module translates the data contained in the text files and passes it to the Matrix Solver module.

The place of the Reader module in the architecture is an interpreter for the Matrix Solver module. It interprets user data into a uniform format.

2.1.3. Matrix Solver Module

The purpose of the Matrix Solver module is to calculate the genetic conductivity between points in the habitat. For this purpose, the module maintains a uniform representation of the habitat generated from data from the Reader module.

The place of the Matrix Solver module in the architecture is the main computation unit of the system.

2.1.4. Writer Modules

The purpose of the Writer module is to write the data generated by Matrix Solver module to ASCII text files.

The place of the Writer module in the architecture is an interpreter for the Matrix Solver module. It interprets calculated data into a printable format.

2.2. Sequence of Operation

1. Program launched.

2. GUI generated.

3. User selects options from GUI including the names and directories of input and output

 files.

4. User clicks the Solve button.

5. Reader modules reads in data, translates it, and passes it to Matrix Solver Module.

6. Matrix Solver Module solves genetic conductivity calculations

7. Writer Module interrogates Matrix Solver Module to get calculated data, writes data to

 output files.

3. Phase 1 Software Specifications

3.1. GUI Module

The GUI Module consists of a single class, Circuitscape, containing a number of Java Swing components that allow the user to select actions and options. See Table 3.1.1. below to see which components correspond to which actions. See Table 3.1.2 below to see which components correspond to which options and how option information is passed.

Table 3.1.1. GUI Actions

	Action
	GUI Component

	Read in data from input file(s)

Solve genetic conductivity calculations

Write calculated data to output files
	solveBn: JButton

	Open the html document containing the index for the help section in default web browser
	helpBn: JButton

Table 3.1.2. Phase 1 GUI Options

	Option
	GUI Component(s)
	Action / Use

	Name and Location of Input File Containing Connection Data
	inputChooser1: JFileChooser
	Passed to CircuitscapeFileReader when using read method

	Name and Location of Input File Containing Points of Interest (GIS file format only)
	inputChooser2: JFileChooser
	Passed to CircuitscapeFileReader when using read method

	Name and Location of Output Files
	outputChooser: JFileChooser
	Passed to CircuitscapeWriterReader when using write method

	File Format
	fileFormatChooser: JComboBox
	Determines the child of CircuitscapeFileReader that is instantiated when reading text files

	Whether connection data represents conductance or resistance
	JButtonGroup containing

conductanceBn:JRadioButton

resistanceBn:JRadioButton
	Set Parameters.CONDUCTANCE

	Whether to calculate connections using average or product (GIS file format only)
	JButtonGroup containing

averageBn:JRadioButton

productBn:JRadioButton
	Set Parameters.AVERAGE

	Whether to include diagonal connections
	diagonals: JCheckBox
	Set Parameters.DIAGONALS

3.2. Reader Module

The Reader Module consists of an abstract class, CircuitscapeFileReader, with a concrete child class for each file format. These classes generate a NodeGrid based on the data contained in the input files. This is done by instantiating a NodeGrid with the correct dimensions and using the addConnection and addPtOfInterest methods to data to it.

3.3. Matrix Solver Module

Data about the habitat is stored in a two-dimensional array of Nodes in the NodeGrid class. Each Node contains a Vector of Connections whose values indicate the genetic conductance between this node and another node. These connections are add the to the NodeGrid with the addConnection method. When multiple Connections are added between the same two Nodes, they must be replaced with a single Connection whose value is equal to the sum of the replaced Connections. When a Connection with infinite conductance is made between two Nodes, these Nodes must be merged into a single Node. This single Node is referenced in the array of Nodes at the indices of both merged Nodes.

The ptsOfInterest in the NodeGrid are a Vector of InterestPoints. InterestPoints contain the data on which points in the habitat the user wants data calculated between. These are added using the addPtOfInterest method. Adding an invalid point will cause an InvalidPointException to be thrown. The Interest Points also contain the calculated data that can later be retrieved by the Writer module. The types of data stored for this phase are distance and equivalent resistance.

Calculating the genetic data is triggered by the solve method. Data must be calculated between all possible combinations of two InterestPoints designated by the user. Separate private method solve for individual types of data. The types of data calculated for this phase are distance and equivalent resistance. Equivalent conductance is also generated as a byproduct of equivalent resistance because they are inverses of each other.

The process for solving for the equivalent in contained in the solveResistances method. The JMP library is used in this process and is available at www.mi.uib.no/~bjornoh/jmp/index2.html. First, the Nodes in the two-dimensional array are emmunerated into a one-dimensional array. This must be done so that each node has only a single value by which it is index. Second, nodal analysis is used to generate a system of linear equations. These equations are stored in a SparseMatrix, which is part of the JMP library. Third, the JMP library is used to solve the system of linear equations. This generates the equivalent resistance between the two InterestPoints.

 The process for solving for the geographic distance in contained in the solveResistances method. It simply uses the Pythagorean theorem to calculate the length of the line between two points on a grid.

3.4. Writer Module

The Writer Module consists of a single class, CircuitscapeFileWriter, whose only public method takes a NodeGrid and a File as arguments. Separate private methods handle the writing of each in individual type of data. The types of data for this phase are distance, resistance, and conductance. The data to be written is obtained by interrogating the InterestPoints of NodeGrid. This data is written to the output files in the form of a tab-delimited matrix.

The location of the output files is the directory indicated by the File. The names of the output files are a bit different though. The name of an output file is the base name indicated by the File with the data type appended. For example, the name of the file with base name OutputName.txt and the distance data type would be OutputName:distance.txt.

3.5 Class Diagrams

See attached Phase 1 class diagrams.

4. Phase 2 Software Specifications

4.1. GUI Module

The following components are added:

 Table 4.1.1. Phase 2 GUI Options

	Option
	GUI Component(s)
	Action / Use

	Whether to allow nonadjacent connections
	nonAdjacent: JCheckBox
	If checked, allow user to input an equation for nonadjacent connections

	Equation for nonadjacent connections
	equationBx: JTextBox
	Set Parameters.CONNECTION_EQUATION

	Maximum distance that connection equation is applied
	maxDistanceBx: JTextBox
	Set Parameters.MAX_DISTANCE

	Whether to use cell distance or map distance as metric for connection equation
	JButtonGroup containing

cellDistBn:JRadioButton

mapDistBn:JRadioButton
	Set Parameters.CELL_DISTANCE

	Whether to generate a current map
	currentMap: JCheckBox
	Set Parameters.CURRENT_MAP

4.2. Reader Module

Existing Reader classes are modified to use an Equation in addition to a text file to define the connections in the habitat. This Equation is input by the user as a String and then parsed to an Equation.

4.3. Matrix Solver Module

When InterestPoints are added, the NodeGrid must check that there is a path between it and all other InterestPoints. If a path doesn’t exist, an InvalidPointException will be thrown.

Storage for current maps is added to InterestPoints.

The process for generating current maps is added to the solveResistance method. This is because the current map requires much of the same data calculated for solving equivalent resistances. In particular, the voltage values already calculated by nodal analysis are needed.

4.4. Writer Module

Additional facilities for writing out current map data are added.

4.5. Class Diagrams

See attached Phase 2 class diagrams.

5. Phase 3 Software Specification

5.1. GUI Module

The following components are added:

Table 5.1.1. Phase 3 GUI Options

	Option
	GUI Component(s)
	Action / Use

	Whether to calculate Markov Chain values
	markovChain: JCheckBox
	Set Parameters.MARKOV_CHAIN

	Whether to find total resistance of path of least resistance
	shortestPath: JCheckBox
	Set Parameters.SHORTEST_PATH

	Explicit values for connections between nonadjacent nodes
	explicitValues: JTextBox[][]
	Set Parameters.EXPLICIT_VALUES

If both explicit values and an equation is entered for nonadjacent connections a pop-up window will ask the user which should be used. Otherwise, the component with entered will be used by default.

A visualization tool will be added that allows the user to see current map data as a colored map.

A graphing tool will be added that plots the equation for nonadjacent values. This will be displayed after the user clicks solve to check if it is the correct equation. If its not the correct equation, the user will be given the option to cancel the solve.

5.2. Reader Module

Existing Reader classes are modified to use explicit connection values for connections between nonadjacent nodes as an alternative to an Equation.

A new reader class has to be created which reads in Excel files containing deme sizes. This is needed for the Markov Chain calculations. This information is passed to the NodeGrid using the setDemeSize method.

5.3. Matrix Solver Module

When there are unconnected InterestPoints, the NodeGrid will not throw an InvalidPointException. Instead, data will only be calculated between the InterestPoints that are connected. Modifying the emuneration step for calculating equivalent resistance so that only connected nodes are listed will do this. This will produce correct data for habitats with disconnected regions.

Storage for Markov Chain data and path of least resistance data are added to InterestPoints.

A method that solves Markov Chain calculations will be added.

A method that finds the path of least resistance will be added. Dijkstra’s shortest path algorithm will be used to find this path.

5.4. Writer Module

Additional facilities for writing out Markov Chain data and path of least resistance data are added.

