CircuitScape Design Team

Coding Standards

	
[image: image1.png]

Sean Collins

Katie Rankin

Carl Reniker

Mike Schulte

Table Of Contents

Executive Summary

The coding standards document covers the standards Circuitscape will use in their programs. It draws on the coding standards used in the Java coding world. This documentation covers all shapes and sizes of coding standards, may of which do not apply to our project, therefore we have adjusted them to fit our size project. What follows represents our abridged version of the documentation that will include our naming, commenting and white space conventions, as well as our version and organization controls.

For reference visit http://java.sun.com/docs/codeconv/.

Table Of Contents
Page

File Naming Conventions
p. 2

Prologue Standards
p. 3

File Prologue Format
p. 3

Module Prologue Format
p. 3

Variable Naming
p. 4

Functions Naming
p. 4

Symbolic Constant Naming
p. 4

Commenting Standards
p. 5

Block Comments
p. 5

Single-Line Comments
p. 5

Trailing Line Comments
p. 5

End-Of-Line Comments
p. 6

Blank Lines
p. 6

Blank Spaces
p. 6

Indention Rules
p. 6

Other Standards
p. 7

Version Control and Organization
p. 7

1. Standards

1.1 File Naming Conventions

Class names will be named with adequately descriptive names and should include only nouns. All files should have simple and descriptive names and avoid abbreviation and acronyms (unless the abbreviation is more commonly used than the full name). These names are to be a word or two in length and give the general ideal of the file. Each person will be able to look at the file name and know what that file contains, including those people who have never seen the file before. Also, each file will start with a capitol letter and will have capitol letters starting each new word. All java source files will use the suffix .java.

Example of class names:

File description: This file takes an array and uses the bubble sort algorithm to sort the elements.

Class Name:

Worst:
Foo.java

Better:
ArraySorter.java

Best:
ArrayBubbleSort.java

1.2 Prologue Standards

The prologue is the comments that come before any significant piece of code. The prologue standards have been separated into two sections: file prologue format and module prologue format.

1.2.1 File Prologue Format

Each file’s prologue will contain the following:

· Class/File name

· Version information

· Date

· Date of the last revision

· Author

· Description

Here is an example of the file prologue format:

/**

 * Class: Class.java

 * Version: 1

 * Date: May 1, 2004

 * Last Revision: February 23, 2004

 * Author: First Last

 * Description: Comments

 */

1.2.2 Module Prologue Format

Each function or procedure in the source code will require the following:

· Module Name

· Description

· Input Parameters

· Output Parameters

· Return Values

Since all team members will be writing their own modules, it is not necessary to include author names in each module prologue.

Here is an example of the module prologue format:

/**

 * ModuleName((input1) (input2))

 * Description of module

 * Input: input1 = X, input2 = Y

 * Output: description of output

 * Return Values: int/float/char/null

 */

1.3 Symbol Naming Standards

1.3.1 Variable Naming

Variable names should be short yet meaningful. All names should be designed to indicate to the casual observer the intent of its use. All one character variable names should be avoided except in the case of “throw-away” variable that have a short usage time frame. Common names for temporary variable are i, j, k, m, and n for integers; c, d, and e for characters. The first letter is always lower case and any following words start with a capitalized letter. Variable names will not start with underscores or dollar signs.

Example of Variable Names:

Bad Variable Names:

· int i;

· char c;

· float foo;

Good Variable Names:

· int animalCounter;

· char animalType;

· float landSize;

1.3.2 Function Naming

Function names should consist of only verbs. The first letter is always lower case and any following words start with a capitalized letter.

1.3.3 Symbolic Constant Naming

Constant names will be in all upper case and the words will be separated with an under score “_”.

1.4 Commenting Standards

Comments will be used when the code written is non-obvious or non-trivial. Too many trivial comments can often become out of date and it is important to avoid such commenting. Comments should be used to give an overview of the code for outside readers to understand the program more clearly.

Commenting Examples:

Bad Commenting Examples:

int populationSize = 1000;
//population size integer

for(condition) { };
//for loop

Good Commenting Examples:

newRestance = 1/ ((1/oldRes1) + (1/oldRes2))
// Calculate equivalent resistance

x = values[i];
// Will not throw ArrayOutOfBounds exception

1.4.1. Block Comments

Block comments should be used at the beginning of each file and before each method. They are used to describe files, methods, data structures, and algorithms when they are not self-explanatory. When used within the functions or methods they serve the same purpose.

Here is an example of block comment format:

/*

 * Block Comment

 */

1.4.2 Single-Line Comments

Single-line comments are used for short comments that are indented to the level of the code that follows. These must appear on one line and if they do not, then block comment format must be followed. Also, a blank line should precede single-line comments.

Here is an example of single-line comment format:

while (condition) {

/* Single-line comment */

. . .

}

1.4.3 Trailing Comments

These are used for very short comments that can fit within the line length constraint (see section 1.6 for line length constraint). These should be shifted far enough away from the code so they are seen as separate entities. When two or more trailing comments are in one “chunk of code” they should all be indented to start at the same tab setting.

Here is an example of trailing comments format:

if (condition) {

return TRUE;

/* Trailing Comment 1 */

} else {

return FALSE;

/* Trailing Comment 2 */

}

1.4.4 End-Of-Line Comments

When complete or partial lines need to be commented out, the ‘//’ comment delimiter is used.

Here is an example of end-of-line comments format:

if (condition) {

// end-of-line comment

. . .

} else {

return TRUE;

// end-of-line comment

}

//if(condition) {

// end-of-line comment

//
. . .

//} else {

//
return FALSE;

// }

1.5 White Space Standards

1.5.1 Blank Lines

One blank line should be used between sections of a source file and between class and interface definitions. Two blank lines should be used

· between methods.

· between local variables in a method and its first statement.

· before a block or single line comment (see section 1.6).

· between logical sections within a method to improve readability.

1.5.2 Blank Spaces

Blank spaces will be used

· to separate a keyword from parenthesis

· after commas in an arguments list

· after all binary operations except for “.”

· to separate expressions in a for statement

· to separate casts

1.5.3 Indention Rules

Four spaces should be used as the unit of indention for methods, variables, and loops.

1.6 Other Standards

· Files should not be longer than 2000 lines.

· Each java source file contains a single public class or interface. If a private class or interface is associated with a public class than they may be included. The public class always appears first in the file.

· Line length should be no more than 80 characters long. When lines are too long to fit onto a single line it will be broken according to the following principles:

· Break after a comma.

· Break before an operator.

· Prefer higher-level breaks to lower-level breaks.

· Align new lines with the beginning of the expression at the same level on the previous line.

· If all else fails, just indent 8 spaces.

2. Version Control and Organization

Each time a piece of code is modified it is give a version number, which is part of the file name. Version numbers also go at the top of the code in the comments, with all major changes and dates of changes listed. Versions start out at one, and are incremented by one for each new version. Each version is saved without over-writing older versions so it is possible to roll the version back in case of problems.

PAGE
2

